NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme becomes the mainstream method owing to the advantages of pollution free, high level of purity and
1. "Bonzyme" Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3. Exclusive “Bonpure” seven-step purification technology, high purity (up to 99%) and stability of production of NMNH powder
4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5. Provide one-stop product solution customization service
When applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective , as at 500 µM concentration, it achieved “an almost 10-fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.
Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction Ginsenoside Rh2, one protopanaxadiol (PPD)-type rare ginsenoside in Panax ginseng, is uncovered to possibly have broad-spectrum pharmacological activity in diversified tumors. It is utilized as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer, which has been a research hotspot in recent years. Current states on cancer therapies Cancer has emerged as the second largest cause for death across the world, with approximately 9.6 million cancer-related deaths in 2018, in accordance with the statistical report by World Health Organization (WHO). Radiotherapy, chemotherapy and surgery are the preferred option for cancer, whose efficacy is however limited by the tumor relapse and drug resistance, requiring a patch such as adjuvant drugs to fix the bug. For anticancer treatment, over 60% of the approved and pre-new drug application candidates are natural products or synthetic molecules based upon natural product molecular skeletons. Strikingly, ginsenosides act as a promising therapeutic target by virtue of its pharmacological activities such as immune adjustment, anti-tumor, anti-oxidation, and protection of the heart and cerebral vessels. 20(S) ginsenoside Rh2 vs. 20(R) ginsenoside Rh2 There are two stereoisomeric forms of ginsenoside Rh2, namely 20(S) ginsenoside Rh2 and 20(R) ginsenoside Rh2. Relative to the (20R) ginsenoside Rh2, (20S) ginsenoside Rh2 has higher cytotoxic activity towards cancer cells. In a previously reported study, the half maximal inhibitory concentration values of 20(S) ginsenoside Rh2 and 20(R) ginsenoside Rh2 in A549 cells are 45.7 and 53.6 µM, respectively. The underlying mechanisms of ginsenoside Rh2 against tumor Mechanically, the anti-tumor effects of ginsenoside Rh2 are realized by enhancing the body’s immune activity to regulate microenvironment, inhibiting differentiation, angiogenesis, proliferation, invasion, and metastasis of tumor cells, inducing the apoptosis, cell cycle arrest, autophagy, superoxide and reactive oxygen species, and reversing the drug resistance via regulating a series of important tumor-related signaling pathway. For instance, ginsenoside Rh2 can activate CD4+ and CD8a+ T lymphocytes, promote their invasion, and enhance the killing effect of lymphocytes on B16-F10 melanoma cells in a concentration-dependent manner. Besides, the number of tumor cells in the G0/G1 phase is increased significantly post treatment with ginsenoside Rh2 and 5-FU, by which the expansion and migration of tumor cells are effectively hampered. Additionally, the ginsenoside Rh2 downregulates the levels of drug-resistance-related genes (eg. MRP1, MDR1, LRP and GST), making colorectal cancer cells more sensitive to 5-FU. Conclusion Ginsenoside Rh2 plays multifunctional roles in both tumor treatment and tumor microenvironment immunomodulation, which may become a promising choice of medication for patients with tumors in the future. Reference [1] Xiaodan S, Ying C. Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother. 2022;156:113912. doi:10.1016/j.biopha.2022.113912 [2] Yang L, Chen JJ, Sheng-Xian Teo B, Zhang J, Jiang M. Research Progress on the Antitumor Molecular Mechanism of Ginsenoside Rh2. Am J Chin Med. Published online January 31, 2024. doi:10.1142/S0192415X24500095 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. BONTAC holds no responsibility for any claims, damages, losses, expenses, costs or liabilities resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction At present, vaccine is the preferred option for the prevention of foot-and-mouth disease (FMD), for which the adjuvant is essential due to its strong role in boosting immune response associated with vaccine antigens. Herein, Rh2 liposomes (Rh2-L) are prepared by ethano injection methods, then loaded into a double emulsion adjuvant and emulsified into a Water-in-Oil-in-Water (W/O/W) emulsion, together with FMDV antigen, for the prevention of FMD. 2. About FMD FMD, also known as aphthous fever, is a viral and fulminating infectious disease in which the foot-and-mouth disease virus (FMDV) violates hoofed livestock such as cattle, pigs and sheep. Since FMD is a zoonotic disease with high incidence and fast transmission speed, FMD vaccination is significant for those with long-term contact with livestock or low immunity such as the herders, veterinarians and children. 3.The significance of transform Rh2 into Rh2-L By transformation of Rh2 into Rh2-L, on the one hand, the poor solubility and hemolysis of Rh2 can be mitigated to a large extent. On the other hand, Rh2-L functions as a liposome. Noteworthily, liposome itself has been revealed to be an adjuvant in vaccine design to improve immune response by interacting with antigen-presenting cells (APCs), increasing the representation of immune stimulants to APCs, and stimulating innate immunity. 4. The immune-enhancing effect of Rh2-L on FMD vaccine Rh2-L has a immune-enhancing effect, as evidenced by an increase in humoral and cellular immune responses. In the FMDV model, the group of the FMD vaccine prepared with double emulsion adjuvants containing Rh2-L presents a more desirable protective effect relative to other groups. This group has a higher neutralizing antibody titer, stronger lymphocyte proliferation responses, and higher levels of cellular and humoral immune cytokine production, including IFN-γ and IL-4. 5. Conclusion Rh2-L can further boost the immune effect of the double emulsion adjuvant against foot-and-mouth disease, which may be a promising and powerful platform for subunit vaccine adjuvant. 6. Reference Saiya Miao, Qiufang Jing, Xuanyu Wang, et al. “Immuno-Enhancing Effect of Ginsenoside Rh2 Liposomes on Foot-and-Mouth Disease Vaccine”. Molecular Pharmaceutics. 2024 21 (1), 183-193. DOI: 10.1021/acs.molpharmaceut.3c00733 BONTAC advantages BONTAC is ·the first enterprise in China to provide mass production of ginsenosides (Rh2) by enzymatic synthesis. BONTAC has unique Bonzyme enzymatic synthesis technology. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC has more than 160 invention patents, with strict third-party self-inspection. Both the high-quality product and excellent service can be better ensured here. BONTAC has 12 years of industry experience, which is worthy of your trust. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Pioneering Discoveries: BONTAC's Innovations in Biotechnical Research In the dynamic realm of biotechnical research, BONTAC stands at the forefront of innovation, dedicated to driving progress and breakthroughs in the field. Our commitment to excellence is demonstrated through our pioneering research initiatives, cutting-edge products, and unwavering focus on technical innovation. At BONTAC, we continuously strive to push the boundaries of biotechnical research to revolutionize industries and improve life. Advancing Biotechnical Research at BONTAC Within BONTAC's research laboratories, a culture of exploration and discovery fuels our quest for innovative solutions in biotechnical research. Our team of experts combines scientific expertise with creative insights to tackle complex challenges and uncover new opportunities. BONTAC's investment in state-of-the-art technology and research facilities underscores our dedication to advancing biotechnical research for the betterment of society. Impactful Applications of Biotechnical Research The fruits of BONTAC's biotechnical research are evident in our array of products that harness the power of scientific insights and technological advancements. These products are the result of meticulous research and development processes aimed at enhancing various sectors such as healthcare, agriculture, and environmental sustainability. From novel treatment options to sustainable agricultural solutions, BONTAC's biotechnical innovations are reshaping industries and driving positive change. At BONTAC, we understand that cellular rejuvenation is not a one-size-fits-all approach. Every individual possesses unique cellular characteristics and experiences distinct environmental factors that influence their overall well-being. That is why we take a personalized approach to cellular rejuvenation, tailoring our solutions to meet the specific needs of each individual. By recognizing the diversity of our customers and their unique cellular profiles, we aim to provide targeted interventions that optimize cellular health and unlock the potential for enhanced vitality. Collaboration and Partnerships in Biotechnical Research Collaboration lies at the heart of BONTAC's approach to biotechnical research, as we recognize the value of partnering with industry leaders and experts to accelerate innovation. By fostering strategic alliances and engaging with key stakeholders, BONTAC creates a network of excellence that fosters collaboration, knowledge exchange, and collective progress in biotechnical research. Altogether, we aim to shape the future of biotechnical innovation and deliver impactful solutions to global challenges. Conclusion In conclusion, BONTAC's dedication to pioneering discoveries in biotechnical research sets us apart as a leader in the field. Our focus on excellent products, robust technical support, and a commitment to technical innovation propels us toward groundbreaking advances that benefit society as a whole. Join us on this exciting journey as we continue to explore new frontiers in biotechnical research, where innovation meets excellence.