NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
The main methods of NADH powder preparation from worldwide NADH manufacturers include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme become the mainstream method owing to the advantages of pollution free, high level of purity and stability.
1、“Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NADH powder
3、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMN powder
4、Provide one-stop product solution customization service
1.Improved energy levels
Not only does NADH act as an important coenzyme in aerobic respiration, the [H] of NADH also carries a large amount of energy. Studies have demonstrated that extracellular use of NADH promotes increased intracellular ATP levels, suggesting that NADH penetrates cell membranes and elevates intracellular energy levels. On a macro level, exogenous supplementation of NADH helps to restore energy and enhance appetite. The increase in energy levels in the brain also helps to improve mental performance and sleep quality. NADH has been used overseas to improve chronic fatigue syndrome, increase exercise endurance, jet lag and other areas.
2.Cellular protection
NADH is a strong antioxidant that naturally occurs in cells and reacts with free radicals to inhibit lipid peroxidation, protecting mitochondrial membranes and mitochondrial function. It has been found that NADH can reduce oxidative stress in cells caused by various factors such as radiation, drugs, toxic substances, strenuous exercise and ischemia, thus protecting vascular endothelial cells, hepatocytes, cardiomyocytes, fibroblasts and neurons. Therefore, injectable or oral NADH is used clinically to improve cardiovascular and cerebrovascular diseases, and as an adjunct to cancer radiotherapy. Topical NADH has been shown to be effective in the treatment of rosacea and contact dermatitis.
3.Promotion of neurotransmitter production
Studies have shown that NADH significantly promotes the production of the neurotransmitter dopamine, a chemical signal that is essential for short-term memory, involuntary movements, muscle tone and spontaneous physical responses. It also mediates the release of growth hormone and determines muscle movement. Without sufficient dopamine, muscles become stiff. Parkinson's disease, for example, is caused in part by a disruption of dopamine synthesis in brain cells. Preliminary clinical data suggest that NADH can help improve the symptoms of Parkinson's disease [9]. NADH also promotes the biosynthesis of norepinephrine and serotonin, showing good potential for use in the relief of depression and Alzheimer's disease.
1. Prevention and treatment of viral-induced inflammatory storms
Scientists have found after extensive research that neo-coronavirus has a mechanism similar to SARS virus to activate inflammatory vesicles NLRP3. and the activation of NLRP3 produces more inflammatory factors, generating excessive inflammation and thus triggering a deadly cytokine storm. This problem can be well addressed by NAD+, which inhibits the activity of NF-κB inflammatory pathway and NLRP3 inflammasome by increasing the activity of sirtuins (SIRT1, SIRT2 and SIRT3), thus preventing cytokine storm caused by excessive inflammation. Therefore, Sinclair and other scientists believe that increasing the concentration of NAD+ may play an important role in the prevention and treatment of neocoronavirus and other viral infections.
2. Restoration of virus-induced metabolic disorders
NAD+ is an essential coenzyme for many cellular energy metabolic pathways, present in every cell of the body, involved in thousands of reactions, and an important player in maintaining cellular viability. In the COVID-19 infection model, NAD+ and NMN supplementation was found to be effective in alleviating cell death and protecting the lung.
The action of supplemental NADH is unclear. Oral NADH supplementation has been used to combat simple fatigue as well as such mysterious and energy-sapping disorders as chronic fatigue syndrome and fibromyalgia. Researchers are also studying the value of NADH supplements for improving mental function in people with Alzheimer's disease, and minimizing physical disability and relieving depression in people with Parkinson's disease. Some healthy individuals also take NADH supplements orally to improve concentration and memory capacity, as well as to increase athletic endurance. However, to date there have been no published studies to indicate that using NADH is in any way effective or safe for these purposes
First, inspect the factory. After some screening, NADH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NADH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NADH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
1. Introduction On July 2023, the World Health Organization (WHO) has classified the soda sweetener aspartame as a possible carcinogen, but said that aspartame is safe to consume within a daily limit of 40 milligrams per kilogram of a person’s body weight according to the latest assessment results regarding the impacts of the non-sugar sweetener aspartame upon the health. How about another sweetener stevioside? Is stevioside a sugar reducer or a health killer? 2. Current situation on stevioside Stevioside (also termed stevia glycoside) has been regarded as “the third largest source of natural sugar across the world” by virtue of its low calorie, high sweetness, good stability and low price, which is widely used in medicine, daily chemicals, beverage, food, brewing and other industries. 3. Regulatory application and control of stevioside The aforementioned report of WHO on the possible carcinogenesis of soda sweetener aspartame is based on high intake. An adult weighing 70 kilograms or 154 pounds would have to drink more than 9 to 14 cans of aspartame-containing soda daily to exceed the limit and potentially face health risks. There is no need to be worry about the risk of carcinogenesis in the case of healthy intake. The same situation is applicable to another sweetener stevioside. Stevioside is approved to be sweetener in food in countries like Mainland China, Japan, Korea, Australia, New Zealand, the USA and European Union. In China, there are detail specifications on the food additive stevioside (GB 2760-2014). 4. The therapeutic properties of stevioside 4.1 Antitumor effect Stevioside can be applied as a valuable chemotherapy candidate to be further investigated for cancer therapy. The activity of the well-known tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), is successfully inhibited with stevioside in a murine skin-cancer model. In addition, stevioside can reduce mammary adenoma incidence in F344 rats. 4.2 Anti-hypertensive activity The hypotensive effect observed in rats after chronic oral administration (30 days) of 2.67 g stevia leaves/day has been confirmed in spontaneously hypertensive rats. In that murine model, stevioside (100 mg/kg; i.v.) is able to reduce blood pressure with no change in serum epinephrine, norepinephrine, or dopamine levels. 4.3 Anti-diabetics In diabetic rats, stevioside (0.2 g/kg; i.v. administration) decreases glucose blood levels, yet increases insulin responses and reactions to an intravenous glucose tolerance test (IVGT). Also, stevioside enhances insulin levels above basal during the IVGT, without altering blood glucose response, in normal rats, hinting its potential as a drug candidate for type 2 diabetes. 4.4 Inhibition of pathogenic bacteria Stevioside has demonstrated antibacterial action on various foodborne pathogenic bacteria, including Escherichia coli, a wellknown etiologic agent of severe diarrhea. Regarding antiviral properties, stevioside seems to impede binding of rotavirus to host cells. Rotavirus is commonly associated with pediatric gastroenteritis. 4.5 Anti-inflammatory property In lipopolysaccharide (LPS)-stimulated THP1 cells, stevioside (1mM) inhibits NF-κB. Moreover, stevioside prevents in vitro upregulation of genes involved in liver inflammation. In addition, silico assays demonstrate its antagonistic action in two proinflammatory receptors: tumor necrosis factor receptor (TNFR)-1 and Toll-like receptor (TLR)-4-MD2. 4.6 Antioxidant capability The antioxidant effects of stevioside and rebaudioside A have been confirmed in a fish model, both of which effectively control lipoperoxidation and protein carbonylation. Furthermore, stevioside prevents oxidative DNA damage in the livers and kidneys of a type 2 diabetes murine model. 5 Conclusion As long as the intake is properly controlled, stevioside can be very useful. Stevioside holds a great promise in the clinical treatment and daily health care. Reference Orellana-Paucar A. M. (2023). Steviosides from Stevia rebaudiana: An Updated Overview of Their Sweetening Activity, Pharmacological Properties, and Safety Aspects. Molecules (Basel, Switzerland), 28(3), 1258. https://doi.org/10.3390/molecules28031258 BONTAC Stevioside Reb-D product features and advantages BONTAC possesses the international application and authorized patents on Stevioside Reb-D (US11312948B2 & ZL2018800019752), where the product quality (purity and stability) can be better ensured. Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.
Introduction Lead (Pb) contamination in aquatic environments poses a significant threat to the health and well-being of aquatic organisms, including fish species. There is rising popularity of prebiotics and probiotics as food ingredients, due to the fact that they can mitigate cadmium and Pb toxicity in animals. Intriguingly, the natural sweeter stevioside, which is commonly utilized as sugar substitutes in a variety of food and beverage products, can be deemed as a prebiotic that enhances the gastrointestinal microflora by increasing beneficial bacteria and mitigates the adverse effects of Pb toxicity in thinlip mullet juveniles, showing favorable application foreground in enhancing fish health and improving aquaculture management practices. Hazards of Pb to thinlip mullet juveniles The thinlip mullet is a key component of the aquatic food chain, which is highly susceptible to the adverse effects of environmental contaminants, including Pb. Exposure to Pb can lead to impaired growth, altered biochemical profiles, oxidative stress and compromised immune response in thinlip mullet juveniles. Apart from these, hepatic damage is observed after Pb exposure, as manifested by increases in serum ALT and AST levels as well as adverse effects such as vascular dilatation of the central vein, vacuolation of hepatocytes, pyknosis of nuclei, and melanomacrophage alterations. Mitigating effect of stevioside against Pb-induced adverse effects Stevioside conspicuously improves the growth performance, regulates biochemical parameters (total protein, AST, and ALT) to a normal level as the control group and strengthens the antioxidant activity (SOD, CAT, and GPx) in thinlip mullet juveniles at a dose-dependent manner, while barely affecting their nutritional composition of whole-body tissues. In addition, Pb-induced immunosuppression is markedly counteracted by the addition of stevioside in the diet, as indicated by the enhanced immune response (lysozyme, bactericidal activity, NBT% and ACH50 level) and downregulation of genes associated with immune function (IL-10 and Hepcidin) in the liver of thinlip mullet juveniles exposed to Pb. Histopathologically, a gradual restoration of normal intestinal and hepatic architecture is seen following administration of stevioside, as evidenced by the improved structure of the intestine and the liver, with normal central vein and melanomacrophage aggregation. Conclusion Stevioside can mitigate lead toxicity in thinlip mullet juveniles, making great impacts upon their growth, metabolism, and immune function, providing new insight into alleviating the effects of environmentally toxic substances on aquatic organisms. Reference Shehata AI, Shahin SA, Elmaghraby AM, et al. Stevioside mitigates lead toxicity in thinlip mullet juveniles: Impacts on growth, metabolism, and immune function. Aquat Toxicol. Published online April 11, 2024. doi:10.1016/j.aquatox.2024.106910 BONTAC Stevioside RD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of Stevioside Reb-D. BONTAC possesses the international application and authorized patents on Stevioside Reb-D (US11312948B2 & ZL2018800019752), where the product quality (purity and stability) can be better ensured. One-stop service for customized product solution is available in BONTAC. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Acute promyelocytic leukemia (APL), the M3 type of acute myeloid leukemia (AML), typically relies on all-trans retinoic acid (ATRA) as its primary treatment. While APL patients treated with ATRA exhibit a high bone marrow complete remission rate, ATRA resistance severely limits its efficacy and contributes to a poor prognosis. Recent research underscores the potential of 20(S)-ginsenoside Rh2 (GRh2) as a lactylation-modified METTL3 inhibitor to ameliorate ATRA-resistance in APL, providing a new direction for the development of novel drugs for APL. About APL APL, constituting 10-15% of all AML cases, is characterized by abnormal promyelocyte proliferation, with associated complications such as bone marrow dysfunction and anemia. In the 1960s and 1970s, APL is a medical emergency with high mortality rate, and API-related death is often attributed to bleeding due to coagulation disorders. With the invention and evolution of new drugs, the prognosis of APL patients has been greatly improved. The 10-year survival rate for APL patients today is estimated to be about 80-90%. Differentiation-inducing agent, such as ATRA, is an essential part for the treatment of APL. Leukemic stem cells (LSCs) and ATRA-resistant APL cells primary contributors to leukemia recurrence post-remission. Addressing these residual issues is of great importance in the pursuit of improved treatment outcomes. The association between METTL3 and ATRA-resistance in APL METTL3 is a promising therapeutic target for ATRA resistant APL. Upregulation of METTL3, which is driven by lactylation modifications, promotes ATRA-resistance in APL, as indicated by the increased number of CD45+ leukemia cells and Giemsa positive cells in the METTL3-OE group. The suppressive impact of GRh2 upon ATRA-resistance in APL In vitro, GRh2 increases histone acetylation levels and considerably inhibits the lactylation level in ATRA-resistant APL cells, and promotes the apoptosis of ATRA-resistance LSCs, acting as a histone lactylation inhibitor. In addition to repressing the enzyme activity of METTL3, GRh2 dose-dependently inhibits the expression levels of METTL3 and MEETL3 and its downstream reading protein YTHDF2, YTHDF1 and YTHDC1 in ATRA-resistant APL cells. Molecular docking analysis shows that GRh2 can directly bind with METTL3. In vivo, GRh2 suppresses METTL3 expression, tumor weight and volume, yet enhances the sensitivity to ATRA differentiation therapy in mice with ATRA-resistant APL xenograft tumors. Moreover, GRh2 treatment considerably elevates the survival of ATRA-resistant APL xenograft mice. Conclusion Mechanically, GRh2 can reduce ATRA resistance in APL by repressing lactylation-driven METTL3. Further exploration of this interaction could lead to the development of more effective and personalized treatment strategies for APL patients, ultimately improving their prognosis and quality of life. Reference Cheng S, Chen L, Ying J, et al. 20(S)-ginsenoside Rh2 ameliorates ATRA resistance in APL by modulating lactylation-driven METTL3. J Ginseng Res. 2024;48(3):298-309. doi:10.1016/j.jgr.2023.12.003 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be responsible for any claims, damages, losses, expenses, or costs arising directly or indirectly from your reliance on the information and material on this website.