NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
Molecules that can be taken in supplement form to increase NAD levels in the body are referred to by some as “NAD boosters.” Studies conducted over the past six decades suggest that the following are some of the many benefits associated with taking an NAD supplement:
Can Help Restore Mitochondrial Function
Helps Repair Blood Vessels —A 2018 mice study found that supplementation could aid in repair and growth of aged blood vessels. There’s also some evidence it can help manage heart disease risk factors like high blood pressure and high cholesterol.
May Improve Muscle Function — One animal study conducted in 2016 found that degenerative muscles had improved muscle function when supplemented with NAD+ precursors.
Potentially Helps Repair Cells and Damaged DNA — Some studies have found evidence that NAD+ precursor supplementation leads to an increase in DNA damage repair. NAD+ is broken down into two component parts, nicotinamide and ADP-ribose, which combine with proteins to repair cells.
May Help Improve Cognitive Function — Several studies conducted on mice have found that mice treated with NAD+ precursors experienced improvements in cognitive function, learning and memory. Findings have led researchers to believe that NAD supplement may help protect against cognitive decline/Alzheimer’s disease.
May Help Prevent Age-Related Weight Gain — A 2012 study showed that when mice fed a high-fat diet were given an NAD supplement, they gained 60 percent less weight than they did on the same diets without the supplement. One reason this may be true is that nicotinamide adenine dinucleotide helps regulate production of stress- and appetite-related hormones, thanks to its effects on circadian rhythms.
Precursors are molecules used in chemical reactions inside the body to create other compounds. There are a number of precursors of NAD+ that result in higher levels when you consume enough of them.
The preparation methods of NAD powder are mainly divided into chemical synthesis method and biocatalytic method, among which biocatalytic method includes biological fermentation method and enzyme catalysis method. Enzyme catalysis method has gradually become the mainstream direction because of its advantages of green, environmental protection and pollution-free. And then the purity of NAD powder will reach 99% after the procedure of further purifying.
1、Enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、High purity(up to 99%) and stability of production of NAD powder
3、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NAD powder
4、Multiple in vivo studies show that Bontac NAD powder is safe and effective
5、Provide one-stop product solution customization service
Nicotinamide adenine dinucleotide (NAD) has several essential roles in metabolism. It acts as a coenzyme in redox reactions, as a donor of ADP-ribose moieties in ADP-ribosylation reactions, as a precursor of the second messenger molecule cyclic ADP-ribose, as well as acting as a substrate for bacterial DNA ligases and a group of enzymes called sirtuins that use NAD+ to remove acetyl groups from proteins. In addition to these metabolic functions, NAD+ emerges as an adenine nucleotide that can be released from cells spontaneously and by regulated mechanisms, and can therefore have important extracellular roles.
First, inspect the factory. After some screening, NAD companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NAD powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NAD powder. If high purity NAD cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NAD powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
The difference all comes down to the charge of these coenzymes. NAD+ is written with a superscript + sign because of the positive charge on one of its nitrogen atoms. It is the oxidized form of NAD. It’s considered “an oxidizing agent” because it accepts electrons from other molecules.
Although they are different chemically, these terms are mostly used interchangeably when discussing their health benefits. Another term you may come across is NADH, which stands for nicotinamide adenine dinucleotide (NAD) + hydrogen (H). This is also used interchangeably with NAD+ for the most part. Both are nicotinamide adenine dinucleotides that function as either hydride donors or hydride acceptors. The difference between these two is that that NADH becomes NAD+ after it donates an electron to another molecule.
Introduction Ginsenoside Rg3 is Panaxanediol type tetracyclic triterpenoid saponin monomer extracted from the root of Panax ginseng, which has a wide range of pharmacological effects including anti-tumor, neuroprotection, cardiovascular protection, anti-fatigue, anti-oxidation, hypoglycemia, and enhancement of immune function. This research unveils the potential value of ginsenoside Rg3 in targeting breast cancer stem cells (BCSCs) to treat breast cancer, one of the most common tumor worldwide with significant morbidity and mortality. Ginsenoside Rg3 as anticancer adjuvant Ginsenoside Rg3 can promote the apoptosis of tumor cells, and inhibit tumor growth, infiltration, invasion, metastasis and neovascularization. At the same time, it has the effect of reducing toxicity, increasing efficacy in the joint application with chemotherapeutic drugs, improving immunity of the organism, and reversing multi-drug resistance of tumor cells. Shenyi capsule, a new anticancer drug with ginsenoside Rg3 monomer as the main component, was approved by China FDA and marketed in 2003, which is mainly used in the adjuvant treatment of various tumors. About BCSCs Breast cancer stem cells (BCSCs) are a group of undifferentiated cells with strong ability of self-renewal and differentiation, which is the main reason for poor clinical outcomes and poor efficacy. BCSCs can clonally proliferate under serum-free three-dimensional culture conditions and form mammospheres. BCSCs have specific surface markers (CD44, CD24, CD133, OCT4 and SOX2) or enzymes (ALDH1). BCSCs function as potential drivers of breast cancer, which are resistant to conventional breast cancer clinical treatments such as radiotherapy, leading to breast cancer recurrence and metastasis. The suppressive effect of ginsenoside Rg3 in the progression of breast cancer Ginsenoside Rg3 exerts inhibitory effects on the viability and clonogenicity of breast cancer cells in a time- and dose-dependent manner. In addition, it suppresses mammosphere formation, as evidenced by the spheroid number and diameter. Furthermore, ginsenoside Rg3 reduces the expression of stem cell-related factors (c-Myc, Oct4, Sox2, and Lin28), and decreases the ALDH (+) subpopulation breast cancer cells. Ginsenoside Rg3 as an accelerator of MYC mRNA degradation Ginsenoside Rg3 depresses BCSCs mainly through downregulating the expression of MYC, one of the main cancer stem cell reprogramming factors with a pivotal role in tumor initiation. Its regulatory effect on MYC mRNA stability is chiefly achieved by promoting the microRNA let-7 cluster. Under normal conditions, the let7 family is expressed at low levels in cancer cells, resulting in stable MYC mRNA expression and high c-Myc expression. However, Rg3 treatment leads to the upregulation of let-7 cluster, impairment of MYC mRNA stability, downregulation of c-Myc expression and inhibition of breast cancer stem-like properties. Conclusion The traditional Chinese herbal monomer ginsenoside Rg3 has the potential to suppress breast cancer stem-like properties by destabilizing MYC mRNA at the post-transcriptional level, showing great promise as adjuvant for the treatment of breast cancer. Reference Ning JY, Zhang ZH, Zhang J, Liu YM, Li GC, Wang AM, Li Y, Shan X, Wang JH, Zhang X, Zhao Y. Ginsenoside Rg3 decreases breast cancer stem-like phenotypes through impairing MYC mRNA stability. Am J Cancer Res. 2024 Feb 15;14(2):601-615. PMID: 38455405; PMCID: PMC10915333. BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible for any claims, damages, losses, expenses, or costs whatsoever resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction The gut microbiota has long been regarded as one of the key elements contributing to the regulation of host health. Any changes in the composition or quality of the gut microbiota may have physiological consequences for the host. To determine the effect of sweetener stevia (also known as stevioside) on the gut microbiome of healthy population, the stool samples are collected from healthy participants who consume with or without five drops of the sweetener stevia twice daily. Following analyses of 16S rRNA sequencing method, no large-scale change is found in the gut microbiota post 12 weeks of consumption with stevia, hinting the safety of stevia. 2. Insignificant changes in the alpha or beta diversity following consumption of stevia It is discovered that there is no significant difference in alpha diversity (in terms of observed taxa, evenness and Shannon Index) and beta diversity (with regard to PCoA, PERMANOVA, and Jaccard Index) between groups. Nevertheless, PCoA plots shows strong separation along the x-axis. In addition, the community composition in each group is relatively even over time and equally diverse. 3. No clear difference in relative abundances of taxa At the genus level, relative abundances are similar between the control and stevia groups. No major difference is observed in relative abundances at the class, order and family level. Strikingly, butyricoccus is the only one identified taxon exhibiting significant difference at baseline, but not after 12 weeks of stevia consumption. Moreover, Collinsella and Aldercreutzia are two coprococcus species identified as explicitly different at baseline (one higher and one lower when comparing stevia vs. control), which however are significantly elevated after 12 weeks of consumption with stevia. 4. The safe intake volume of sweetener steviol glycosides In the European Food Safety Authority (EFSA), there is a Panel on Food Additives and Flavourings (FAF), which is responsible for evaluating the safety of food additives and establishing acceptable daily intake levels for safe use. Steviol glycosides, one of the extract from stevia, is evaluated by the FAF as well. In accordance to the latest toxicological test, this sweeter is not genotoxic and carcinogenic, without any adverse effects on the human reproductive system or growing children. The expert group has set the acceptable daily intake (ADI) of steviol glycosides at 4 milligrams per kilogram of body weight per day, which is consistent with the level determined by the Joint Expert Committee on Food Additives (JECFA) administered by the US Food and Agriculture Organization (FAO) and the World Health Organization (WHO). 5. Conclusion Regular, long-term consumption of stevia does not overtly alter the composition of the human gut microbiotia. Stevia can be safe as long as the intake volume is controlled appropriately. Reference Singh G, McBain AJ, McLaughlin JT, Stamataki NS. Consumption of the Non-Nutritive Sweetener Stevia for 12 Weeks Does Not Alter the Composition of the Human Gut Microbiota. Nutrients. 2024;16(2):296. Published 2024 Jan 18. doi:10.3390/nu16020296 BONTAC Stevia/Stevioside (RD) BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. Patent-grade Stevia Reb-D (US11312948B2 & ZL2018800019752) is availbale at BONTAC. High quality and stable supply of stevioside Reb-D can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Dengue fever is an acute infectious disease caused by the Dengue virus through the bite of an infected Aedes species (Ae. aegypti or Ae. albopictus) mosquito, with the main symptoms such as high fever, dizziness, headache, rash and severe pains (eye, muscle, joint, or bone pain), etc. This disease is widely prevalent in tropical and subtropical climates. An estimated 100 to 400 million people are infected each year, where over 80% are usually mild and asymptomatic. Nonetheless, severe Dengue fever can increase the risk of death if not treated properly. Thus, early diagnosis of this disease is significant to its timely treatment. Noteworthily, non-structural protein 1 (NS1), a highly conserved glycoprotein, is chiefly secreted during the infection of Dengue virus, which is intensively deemed as the main pathogenesis factor of Dengue fever. Hence, NSI is generally used as a biomarker for the early detection of this disease. In this study, a sandwich enzyme-linked immunosorbent assay (ELISA) in combination with the thio nicotinamide adenine dinucleotide (thio-NAD/S-NAD) cycling method (hereafter termed ultrasensitive ELISA) is utilized to detect NSI, followed by the comparison with NAAT to confirm its detection accuracy. 2. Advantages and disadvantages of traditional detection methods for Dengue fever At present, there are four main detection methods for Dengue fever. Viral isolation and identification have high specificity but are time-consuming, taking at least 5 days. The rapid antigen test is the fastest and most cost-efficient among the other methods, but the sensitivity and specificity are relatively low. Serologic test based on IgM and IgG is limited by the number of days of infection, as the test must be delayed until the level of antibodies rises to a detectable level. In clinic, NAAT is often applied to determine Dengue fever by dirt of its high sensitivity and specificity. However, this method is expensive, laborious, and prone to false positivity, which must be conducted by the trained personnel. To overcome the disadvantages of these methods, a new detection method ultrasensitive ELISA is applied in this study. 3. Workflow of ultrasensitive ELISA with thio-NAD cycling A pair of antibodies is used for capturing the NS1 protein in the sandwich ELISA, and alkaline phosphatase is labeled on the secondary antibody. Aside from the antibodies, an androsterone derivative, 3α-hydroxysteroid dehydrogenase, thio-NAD, and NADH are used to construct the thio-NAD enzyme cycling system. During the thio-NAD cycling reaction, thio-NADH constantly accumulated in a triangular number fashion and could be directly measured at an absorbance of 405 nm. 4. The comparison of ultrasensitive ELISA and NAAT in the detection of Dengue NS1 Protein In NAAT, 60 specimens are dengue-positive, and 25 are dengue-negative. The NAAT cycling threshold (CT) value of those dengue-positive specimens ranged from 12.42 to 31.41. In the ultrasensitive ELISA, 59 specimens are correspondingly positive to the NAAT results, whereas 25 specimens are completely correspondingly negative to the NAAT results. Compared with NAAT, the sensitivity and specificity of the ultrasensitive ELISA are 98.3% and 100%, respectively (Table 2). Of 60 NAAT-confirmed dengue-positive patient specimens, only 1 specimen is negative in the ultrasensitive ELISA. The NAAT data showed that the specimen is a type 4 DENV infection case with a CT value of 21.59. The results of the ultrasensitive ELISA are in almost perfect agreement with the NAAT results, with a kappa value of 0.972 (95% CI: 0.917-1.0). 5. Conclusion Ultrasensitive ELISA method is easy to perform and requires no professional trainees to operate. The detection can be started immediately after receiving a small sample. It is particularly suitable for the early detection of Dengue disease in low-income countries. Reference Chen, Po-Kai et al. “Advanced Detection Method for Dengue NS1 Protein Using Ultrasensitive ELISA with Thio-NAD Cycling.” Viruses vol. 15,9 1894. 8 Sep. 2023, doi:10.3390/v15091894 Product advantages and features of BONTAC Thio-NAD/S-NAD BONTAC is one of the few enterprises in China that can produce Thio-NAD, with “Bonzyme” Whole-enzymatic method (environmental-friendly; no harmful solvent residues) and unique “Bonpure” seven-step purification technology. BONTAC intergrates R&D, production and sale, with self-owned factories and a number of international certifications to ensure high quality and stable supply of products. Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.