Give you a brief introduction to nad powder | BONTAC

Give you a brief introduction to nad powder | BONTAC

NAD plays a very critical role in a wide range of cellular reactions. The conversion of NAD from its oxidized form (NAD+) to its reduced form (NADH), and back, provides the cell with a mechanism for accepting and donating electrons. NAD+/NADH plays a significant role in the reactions associated with glycolysis, oxidative phosphorylation, and fermentation. Given its importance to cell function, it would be useful if there were a means of visualizing NADH in living cells. The work presented in this case study introduces a new tool for research in cell metabolism – a NADH fluorescent sensor. NAD powder generally tend to be the raw materials of health care products, cosmetic products, functional food additives and animals’ health products.
Get A Quote

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

about us

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Learn More

NAD powder efficacy in health

Molecules that can be taken in supplement form to increase NAD levels in the body are referred to by some as “NAD boosters.” Studies conducted over the past six decades suggest that the following are some of the many benefits associated with taking an NAD supplement:
Can Help Restore Mitochondrial Function
Helps Repair Blood Vessels —A 2018 mice study found that supplementation could aid in repair and growth of aged blood vessels. There’s also some evidence it can help manage heart disease risk factors like high blood pressure and high cholesterol.
May Improve Muscle Function — One animal study conducted in 2016 found that degenerative muscles had improved muscle function when supplemented with NAD+ precursors.
Potentially Helps Repair Cells and Damaged DNA — Some studies have found evidence that NAD+ precursor supplementation leads to an increase in DNA damage repair. NAD+ is broken down into two component parts, nicotinamide and ADP-ribose, which combine with proteins to repair cells.
May Help Improve Cognitive Function — Several studies conducted on mice have found that mice treated with NAD+ precursors experienced improvements in cognitive function, learning and memory. Findings have led researchers to believe that NAD supplement may help protect against cognitive decline/Alzheimer’s disease.
May Help Prevent Age-Related Weight Gain — A 2012 study showed that when mice fed a high-fat diet were given an NAD supplement, they gained 60 percent less weight than they did on the same diets without the supplement. One reason this may be true is that nicotinamide adenine dinucleotide helps regulate production of stress- and appetite-related hormones, thanks to its effects on circadian rhythms.
Precursors are molecules used in chemical reactions inside the body to create other compounds. There are a number of precursors of NAD+ that result in higher levels when you consume enough of them.

NAD powder efficacy in health

BONTAC NAD product features and advantages

1、Enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder 
2、High purity(up to 99%) and stability of production of NAD powder 
3、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NAD powder  
4、Multiple in vivo studies show that Bontac NAD powder is safe and effective
5、Provide one-stop product solution customization service

BONTAC NAD product features and advantages

NAD powder manufacturing method

The preparation methods of NAD powder are mainly divided into chemical synthesis method and biocatalytic method, among which biocatalytic method includes biological fermentation method and enzyme catalysis method. Enzyme catalysis method has gradually become the mainstream direction because of its advantages of green, environmental protection and pollution-free. And then the purity of NAD powder will reach 99% after the procedure of further purifying. 

NAD powder manufacturing method
User Reviews

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs
Frequently Asked Question

Do you have any question?

Nicotinamide adenine dinucleotide (NAD) has several essential roles in metabolism. It acts as a coenzyme in redox reactions, as a donor of ADP-ribose moieties in ADP-ribosylation reactions, as a precursor of the second messenger molecule cyclic ADP-ribose, as well as acting as a substrate for bacterial DNA ligases and a group of enzymes called sirtuins that use NAD+ to remove acetyl groups from proteins. In addition to these metabolic functions, NAD+ emerges as an adenine nucleotide that can be released from cells spontaneously and by regulated mechanisms, and can therefore have important extracellular roles.

First, inspect the factory. After some screening, NAD companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NAD powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NAD powder. If high purity NAD cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NAD powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.

The difference all comes down to the charge of these coenzymes. NAD+ is written with a superscript + sign because of the positive charge on one of its nitrogen atoms. It is the oxidized form of NAD. It’s considered “an oxidizing agent” because it accepts electrons from other molecules.
Although they are different chemically, these terms are mostly used interchangeably when discussing their health benefits. Another term you may come across is NADH, which stands for nicotinamide adenine dinucleotide (NAD) + hydrogen (H). This is also used interchangeably with NAD+ for the most part. Both are nicotinamide adenine dinucleotides that function as either hydride donors or hydride acceptors. The difference between these two is that that NADH becomes NAD+ after it donates an electron to another molecule.

Our updates and blog posts

Mechanism for Preventing and Treating Covid-19: NMN VS Paxlovid

With the epidemic control policies loosening worldwide, residents in China, India, Malaysia, Japan and Singapore have suffered a shortage of medicines to varying degrees. But on the other hand, the type of medicines available to the public is dynamically increasing, and at present the anti-Covid-19 stars available on the market include Paxlovid, NMN, etc. What are the similarities and differences between the two in terms of mechanism of preventing and treating the Coronavirus? It is necessary to briefly make out the principle of Covid-19 infection in human cells before discussing the mechanism of action of Paxlovid and NMN.  How SARS-CoV-2 infect cells?  First, the mature Covid-19 (as shown in Figure 1) is mainly composed of structure proteins including spike (S) protein, nucleocapsid (N) protein, membrane (M) protein and envelope (E) protein and RNA viral gene. Figure 1. SARS-Cov-2 structure The SARS-CoV-2 opens a channel into the cell by its S protein through recognizing and binding to the ACE2 protein receptor of host cells in vivo. After entering the host cell, the SARS-CoV-2 initiates transcription and translation activities, replicating plenty of SARS-CoV-2, disrupting the cell structure and interfering with the normal cell function. Under this mechanism of action, the supplement of medicine directly comes into play on the sides of spike S protein of the Covid-19 and the ACE2 protein of host cells in human body. Paxlovid prevents the synthesis of S proteins of SARS-CoV-2. The mechanism of Paxlovid to treat Covid-19 Paxlovid was made up with two main ingredients, Nirmatrelvir and Ritonavir. Nirmatrelvir combats SARS-CoV-2 by blocking the synthesis of S proteins.The gene information of all SARS-CoV-2 proteins only take over 1/3 of the right side of RNA strand (as shown in Figure 2), and the remaining 2/3 of the RNA gene strand is used for transcription and translation for multiple proteins to synthesize the polyprotein. After the polyprotein is synthesized, it will be cleaved into several functional proteins likely S protein by virus proteases. Figure 2. RNA structure In short, when the SARS-CoV-2 replicates, the RNA initiates transcription and translation for proteins in bulk and then proteases cleave it to form structural proteins (S protein). The main proteases used when replicating is CL3. Nirmatrelvir of Paxlovid binds to the CL3 protease to prevent the cleavage of the SARS-CoV-2 polyprotein so as to interrupt the protein synthesis of viral. (As shown in Figure 3). What’s more, another ingredient, Ritonavir, works by maintaining the concentration of Nirmatrelvir in the body, prolonging and enhancing its efficacy and maintaining the interruption strength for the replicating protease CL3. Figure 3.CL3 in translation  The mechanism of NMN to prevent and treat Covid-19  NMN prevents Covid-19 infection by protecting DNA and reducing ACE2 expression, shutting down the pathway of ACE2 protein into human cells. The researchers found that DNA damages accumulates intracellular ACE2 receptor proteins. However, these two enzymes to repair DNA damage, sirtuins and PARP, need to be to motivated by NAD+. Studies showed that NMN supplementation is effective in increasing NAD+ levels and thus reducing ACE2 protein expression. As it demonstrates that experiment proved that a reduction in ACE2 expression after infected with the SARS-CoV-2, along with a reduction in viral load and tissue damage in the lungs (as shown in Figure 4) based on the situation that 200mg/kg of NMN fed to old mice aged 12 months for 7 days. Figure 4. NMN performance in recuding viral loads  The study not only reaffirms the convincing for NMN to treat Covid-19 infection, but based on its proven ability to reduce lung pathological damage and even death in mice infected with neointima, NMN may be used in clinical trials to treat patients with Covid-19 infection. It is clear from the above principles of action that both Paxlovid and NMN work on original source of infection to treat and prevent Covid-19. The difference between the two is that Paxlovid interferes with the replication of the virus while NMN closes the door to the entry of Covid-19 into human cells. Both different mechanisms of action are in principle effective in preventing the invasion of Covid-19. References  1. FACT SHEET FOR HEALTHCARE PROVIDERS: EMERGENCY USE AUTHORIZATION FOR PAXLOVID, 2022 2. Jin R., Niu C.,et al. DNA damage contributes to age-associated differences in SARS-CoV-2 infection, Aging Cell, 2022

Frontier Dynamics on the Molecular Mechanism of Ginsenoside Rh2 Against Tumor

Introduction Ginsenoside Rh2, one protopanaxadiol (PPD)-type rare ginsenoside in Panax ginseng, is uncovered to possibly have broad-spectrum pharmacological activity in diversified tumors. It is utilized as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer, which has been a research hotspot in recent years. Current states on cancer therapies Cancer has emerged as the second largest cause for death across the world, with approximately 9.6 million cancer-related deaths in 2018, in accordance with the statistical report by World Health Organization (WHO). Radiotherapy, chemotherapy and surgery are the preferred option for cancer, whose efficacy is however limited by the tumor relapse and drug resistance, requiring a patch such as adjuvant drugs to fix the bug. For anticancer treatment, over 60% of the approved and pre-new drug application candidates are natural products or synthetic molecules based upon natural product molecular skeletons. Strikingly, ginsenosides act as a promising therapeutic target by virtue of its pharmacological activities such as immune adjustment, anti-tumor, anti-oxidation, and protection of the heart and cerebral vessels. 20(S) ginsenoside Rh2 vs. 20(R) ginsenoside Rh2 There are two stereoisomeric forms of ginsenoside Rh2, namely 20(S) ginsenoside Rh2 and 20(R) ginsenoside Rh2. Relative to the (20R) ginsenoside Rh2, (20S) ginsenoside Rh2 has higher cytotoxic activity towards cancer cells. In a previously reported study, the half maximal inhibitory concentration values of 20(S) ginsenoside Rh2 and 20(R) ginsenoside Rh2 in A549 cells are 45.7 and 53.6 µM, respectively. The underlying mechanisms of ginsenoside Rh2 against tumor Mechanically, the anti-tumor effects of ginsenoside Rh2 are realized by enhancing the body’s immune activity to regulate microenvironment, inhibiting differentiation, angiogenesis, proliferation, invasion, and metastasis of tumor cells, inducing the apoptosis, cell cycle arrest, autophagy, superoxide and reactive oxygen species, and reversing the drug resistance via regulating a series of important tumor-related signaling pathway. For instance, ginsenoside Rh2 can activate CD4+ and CD8a+ T lymphocytes, promote their invasion, and enhance the killing effect of lymphocytes on B16-F10 melanoma cells in a concentration-dependent manner. Besides, the number of tumor cells in the G0/G1 phase is increased significantly post treatment with ginsenoside Rh2 and 5-FU, by which the expansion and migration of tumor cells are effectively hampered. Additionally, the ginsenoside Rh2 downregulates the levels of drug-resistance-related genes (eg. MRP1, MDR1, LRP and GST), making colorectal cancer cells more sensitive to 5-FU. Conclusion Ginsenoside Rh2 plays multifunctional roles in both tumor treatment and tumor microenvironment immunomodulation, which may become a promising choice of medication for patients with tumors in the future. Reference [1] Xiaodan S, Ying C. Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother. 2022;156:113912. doi:10.1016/j.biopha.2022.113912 [2] Yang L, Chen JJ, Sheng-Xian Teo B, Zhang J, Jiang M. Research Progress on the Antitumor Molecular Mechanism of Ginsenoside Rh2. Am J Chin Med. Published online January 31, 2024. doi:10.1142/S0192415X24500095 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. BONTAC holds no responsibility for any claims, damages, losses, expenses, costs or liabilities resulting or arising directly or indirectly from your reliance on the information and material on this website.

Extraordinary Merits of Ultrasensitive ELISA with Thio-NAD Cycling in Determining Dengue NS1 Protein

1. Introduction Dengue fever is an acute infectious disease caused by the Dengue virus through the bite of an infected Aedes species (Ae. aegypti or Ae. albopictus) mosquito, with the main symptoms such as high fever, dizziness, headache, rash and severe pains (eye, muscle, joint, or bone pain), etc. This disease is widely prevalent in tropical and subtropical climates. An estimated 100 to 400 million people are infected each year, where over 80% are usually mild and asymptomatic. Nonetheless, severe Dengue fever can increase the risk of death if not treated properly. Thus, early diagnosis of this disease is significant to its timely treatment. Noteworthily, non-structural protein 1 (NS1), a highly conserved glycoprotein, is chiefly secreted during the infection of Dengue virus, which is intensively deemed as the main pathogenesis factor of Dengue fever. Hence, NSI is generally used as a biomarker for the early detection of this disease. In this study, a sandwich  enzyme-linked immunosorbent assay (ELISA) in combination with the thio nicotinamide adenine dinucleotide (thio-NAD/S-NAD) cycling method (hereafter termed ultrasensitive ELISA) is utilized to detect NSI, followed by the comparison with NAAT to confirm its detection accuracy. 2. Advantages and disadvantages of traditional detection methods for Dengue fever  At present, there are four main detection methods for Dengue fever. Viral isolation and identification have high specificity but are time-consuming, taking at least 5 days. The rapid antigen test is the fastest and most cost-efficient among the other methods, but the sensitivity and specificity are relatively low. Serologic test based on IgM and IgG is limited by the number of days of infection, as the test must be delayed until the level of antibodies rises to a detectable level. In clinic, NAAT is often applied to determine Dengue fever by dirt of its high sensitivity and specificity. However, this method is expensive, laborious, and prone to false positivity, which must be conducted by the trained personnel. To overcome the disadvantages of these methods, a new detection method ultrasensitive ELISA is applied in this study. 3. Workflow of ultrasensitive ELISA with thio-NAD cycling A pair of antibodies is used for capturing the NS1 protein in the sandwich ELISA, and alkaline phosphatase is labeled on the secondary antibody. Aside from the antibodies, an androsterone derivative, 3α-hydroxysteroid dehydrogenase, thio-NAD, and NADH are used to construct the thio-NAD enzyme cycling system. During the thio-NAD cycling reaction, thio-NADH constantly accumulated in a triangular number fashion and could be directly measured at an absorbance of 405 nm. 4. The comparison of ultrasensitive ELISA and NAAT in the detection of Dengue NS1 Protein In NAAT, 60 specimens are dengue-positive, and 25 are dengue-negative. The NAAT cycling threshold (CT) value of those dengue-positive specimens ranged from 12.42 to 31.41. In the ultrasensitive ELISA, 59 specimens are correspondingly positive to the NAAT results, whereas 25 specimens are completely correspondingly negative to the NAAT results. Compared with NAAT, the sensitivity and specificity of the ultrasensitive ELISA are 98.3% and 100%, respectively (Table 2). Of 60 NAAT-confirmed dengue-positive patient specimens, only 1 specimen is negative in the ultrasensitive ELISA. The NAAT data showed that the specimen is a type 4 DENV infection case with a CT value of 21.59. The results of the ultrasensitive ELISA are in almost perfect agreement with the NAAT results, with a kappa value of 0.972 (95% CI: 0.917-1.0). 5. Conclusion Ultrasensitive ELISA method is easy to perform and requires no professional trainees to operate. The detection can be started immediately after receiving a small sample. It is particularly suitable for the early detection of Dengue disease in low-income countries. Reference Chen, Po-Kai et al. “Advanced Detection Method for Dengue NS1 Protein Using Ultrasensitive ELISA with Thio-NAD Cycling.” Viruses vol. 15,9 1894. 8 Sep. 2023, doi:10.3390/v15091894 Product advantages and features of BONTAC Thio-NAD/S-NAD BONTAC is one of the few enterprises in China that can produce Thio-NAD, with “Bonzyme” Whole-enzymatic method (environmental-friendly; no harmful solvent residues) and unique “Bonpure” seven-step purification technology. BONTAC intergrates R&D, production and sale, with self-owned factories and a number of international certifications to ensure high quality and stable supply of products. Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.

Get In Touch

Don't hesitate to contact with us

Sending your message. Please wait...