NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
1. "Bonzyme" Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3. Exclusive “Bonpure” seven-step purification technology, high purity (up to 99%) and stability of production of NMNH powder
4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5. Provide one-stop product solution customization service
When applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective , as at 500 µM concentration, it achieved “an almost 10-fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme becomes the mainstream method owing to the advantages of pollution free, high level of purity and
NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.
Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
1. Introduction Nicotinamide adenine dinucleotide (NAD) compartmentalized in adipocytes can modulate adipocyte differentiation and gene expression, in addition to controlling glucose metabolism. White adipose tissue (WAT), one major adipose tissue, may be one of the direct target for NAD supplementation. 2. About WAT In contrast to brown adipose tissue (BAT), WAT contains a single lipid droplet and few mitochondria. WAT, once thought to be morphologically and functionally unremarkable, is in fact highly dynamic, with plasticity and heterogeneity, which is widely distributed in the subcutaneous tissues and around the internal organs. WAT plays a key role in a range of biological processes, such as maintenance of energetic homeostasis, processing and handling of glycans and lipids, blood pressure control, and host defence, with tight relationship with metabolic disorders such as diabetes. 3. The tissue-specific roles of NAD NMN is synthesized from NAM and NR by NAMPT and NRK, respectively. The synthesized NAD+ from NMN is used as a SIRT1 substrate, which leads to the recycling of NAD+ via the salvage pathway. In this process, NAD+ can exert different effects depending on the tissue. Remarkably, NAD precursors can control metabolic stress particularly via focusing on adipose tissue. 4. The effects of boosting NAD+ on WAT Supplementation of NMN and NR has been shown to reduce body weight and enhance insulin sensitivity in regular chow-fed aged wild-type mice and diet-induced obese mice, respectively. NAM supplementation diminishes fat accumulation in diet-induced obese mice. Additionally, both NMN and NR supplementation prevent inflammation even with different treatment duration. NAM administration boosts mitochondrial biogenesis and glutathione synthesis in WAT. Similarly, it is evidenced that NMN treatment in high fat diet-induced type 2 diabetes mouse model facilitates the recovery of Glutathione S-transferase Alpha 2 (Gsta2) gene expression in the liver. 5. The adipose-specific effects of nicotinamide phosphoribosyltransferase (NAMPT) NAMPT, one NAD regulator in WAT, is a promising therapeutic target for the treatment of metabolic disorders. NAMPT plays a potential role in maintaining adipose tissue homoeostasis, as evidenced by the explicitly blocked adipocyte differentiation and lipid synthesis in vitro post treatment of NAMPT inhibitor FK866. For some reasons such as differences in sex, age, and/or basal levels of cellular NAD+ availability, there are various inconclusive results regarding the impacts of NAD+ metabolism on adipocytes in the adipocyte-specific NAMPT-deficient mouse model or in vitro cell models. Further investigation on the effects of NAD+ supplementation and the distinct functions of NAMPT in adipocytes is still needed. 6. Conclusion The importance of NAD metabolism in WAT has been highlighted. NAD has tissue-specific roles. Specifically, WAT may be one of the direct target for NAD supplementation. Supplementation with NAD+ precursors can reduce fat accumulation and inflammation in adipose tissue. Reference Kwon SY, Park YJ. Function of NAD metabolism in white adipose tissue: lessons from mouse models. Adipocyte. 2024;13(1):2313297. doi:10.1080/21623945.2024.2313297 About BONTAC BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. NAD+ precursors can significantly elevate NAD+ level in murine tissues, effectively mitigate metabolic syndrome, enhance cardiovascular health, protect against neurodegeneration, and boost muscular strength, with broad prospect in the anti-aging-related field. 2. The synthesis and metabolism of NAD+ in age-related pathologies NAD+ is synthesized from NAD+ precursors and amino acids tryptophan via three main pathways: De novo, Preiss-Handler, and Salvage. Supplementation of NAD+ precursors can be advantageous in maintaining normal cellular metabolism regulated by NAD+ and NAD+-dependent enzymes such as Sirtuins, PARP, CD38, and SARM1. NAD+ intermediates require conversion into NA to elevate NAD+ level. NAD+ and its metabolism-related enzymes have very important roles in biological processes such as cellular metabolic processes, gene expression, apoptosis and carcinogenesis. NAD+ repletion is drawing attention as an anti-aging intervention. NAD+ precursors, such as NA, NAM, NR, and NMN, provide beneficial effects in various preclinical disease models of age-induced deficits, including metabolic disorders, cardiovascular, neurodegenerative diseases, and musculoskeletal diseases. 3. Comparison on the efficacy of replenishing NAD precursors in pre-clinical studies and clinical studies in age-related pathologies The downregulation of NAD+ level in cells and tissues is not a universal phenomenon for aging-related pathologies. NAD+ merely decreases with age in certain tissues. The efficacy of NAD+ precursors in clinical studies has been limited in comparison with that in the pre-clinical studies. Noteworthily, this issue can be addressed as long as much attention has been paid to the metabolism of NAD. With regards to the oral supplementation of NAD+ precursors, there is obvious link between NAD metabolism and gut microbes. Specifically, oral consumption of NMN is converted into NAMN through interaction with the gut microbiome. In addition, dietary NAM and NR are converted into NA through gut microbiota. 4. Future research directions regarding the NAD+ metabolism It is fundamental to consider how the gut microbiome affects NAD+ metabolism, and changes in microbiome composition may affect the availability of NAD+ precursors. Future studies also require the comparative analysis of different precursors, and the role of gut microbiomes regarding various intermediaries needs to be investigated. Assessment of how NAD+ precursors affect microbiota and how their interaction with NAD+ metabolism benefits the physiological condition is essential for future preclinical and clinical studies. 5. Conclusion Supplementation of suitable NAD+ precursors or intervening in NAD+ metabolism can restore the body's NAD+ level, which is of great practical significance for effectively improving aging-related diseases and prolonging healthy life span is of great practical significance for effectively improving aging-related diseases and prolonging healthy life span. NAD metabolism involves gut microbiome, and in-depth research on their interaction is possibly an important breakthrough in the future to combat aging-related pathologies. Reference Iqbal T, Nakagawa T. The therapeutic perspective of NAD+ precursors in age-related diseases. Biochem Biophys Res Commun. Published online February 2, 2024. doi:10.1016/j.bbrc.2024.149590 About BONTAC BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 160 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. BONTAC holds no responsibility for any claims, damages, losses, expenses, costs or liabilities whatsoever resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Glaucoma is regarded as the second dominant cause of blindness across the world. With the amounting number and proportion of elderly people, it is estimated that 111.8 million people will have glaucoma by 2040. Nicotinamide riboside (NR) has been attested to protect retinal ganglion cells from the stress of elevated intraocular pressure and optic nerve crush. Glaucoma patients can protect their optic nerves by oral administration of NR at a dose of 300 mg (approximately 1.18 mM). The abovementioned protective effects of NR may be achieved by its antioxidant and antifibrotic properties. About glaucoma Glaucoma is a typical ocular disease characterized by atrophy and depression of the optic nerve head, visual field defects, and diminution of vision. The pathologically increased intraocular pressure and insufficient blood supply to the optic nerve are deemed as the primary risk factors for the development of the disease. In addition to those with family history of glaucoma, people with severe myopia/hyperopia, hypertension, hyperlipidemia, hyperglycemia and long-term use of corticosteroid medications, especially eye drops, are at high risk for glaucoma. Extraordinary role of NR in protecting HTMs against oxidative stress In glaucoma, oxidative stress can trigger TM degeneration, thereby resulting in intraocular hypertension. Herein, an oxidative damage model is established in vitro by incubation of human trabecular meshwork (HTM) cells with 200 μM H2O2 for 24 h. As expected, NR hampers H2O2-induced apoptosis in HTM cells, as evidenced by the upregulation of the anti-apoptotic protein Bcl-2 and downregulation of apoptotic protein Bax. Conversely, NR boosts the viability of oxidative-damaged HTM cells. In addition, NR can shield HTM cells from oxidative stress by lowering ROS and superoxide anion levels. Apart from this, NR overtly improves the H2O2-induced decrease in the mitochondrial membrane potential (MMP) in HTM cells, hinting its antioxidant effect possibly achieved by maintaining mitochondrial homeostasis. Underlying mechanism regarding the antioxidant role of NR in HTM cells MAPK and JAK2/Stat3 pathways are related to NR-alleviated HTM cell apoptosis during oxidative stress. In the MAPK pathway, H2O2 leads to the downregulation of p-P38/P38 ratio and upregulation of p-ERK1/2 protein expression, which are offset by intervention with NR. In the JAK2/Stat3 pathway, H2O2 induces downregulation of p-JAK2 protein expression, while NR runs oppositely. Potential antifibrotic role of NR in HTM cells Considering that transforming growth factor-beta 2 (TGF-β2), a profibrotic cytokine, is also a major contributor to glaucomatous HTM dysfunction, an HTM cell model of fibrosis is constructed by induction of TGF-β2 at 10 ng/mL for 48 h. Remarkably, NR prevents TGF-β2-induced fibrosis by reducing extracellular matrix (ECM) deposition in HTM cells. Concretely, the mRNA and protein levels of fibronectin (FN) are elevated in the TGF-β2-treated HTM cells, which however are counteracted by NR. Conclusion NR can boost the viability, proliferation and MMP oxidative damage in H2O2-induced HTM cells, and hamper TGF-β2-induced fibrosis, which is linked to the MAPK and JAK2/Stat3 pathways. NR may be a potential therapeutic agent for glaucoma by inhibiting oxidative damage and fibrosis in HTM cells. Reference Zeng Y, Lin Y, Yang J, et al. The Role and Mechanism of Nicotinamide Riboside in Oxidative Damage and a Fibrosis Model of Trabecular Meshwork Cells. Transl Vis Sci Technol. 2024;13(3):24. doi:10.1167/tvst.13.3.24 BONTAC NR BONTAC is one of the few suppliers in China that can launch mass production of raw materials for NR, with self-owned factory and professional R&D team. Up till now, there are 173 BONTAC patents. BONTAC provides one-stop service for customized products. Both malate and chloride salt forms of NR are available. By dirt of unique Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method, the product content and conversion rate can be maintained in a higher level. The purity of BONTAC NR can reach above 97%. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, or costs resulting or arising directly or indirectly from your reliance on the information and material on this website.