NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NMN supplements are mainly used to increase NAD+ levels to improve metabolic diseases and slow down the aging process.
Improve metabolic diseases: Studies have shown that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity.
Delay the aging process: NMN can increase the vitality of cells, improve the metabolic process of cells, and delay the aging process.
Protect DNA: NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. Supplementing NMN can increase NAD+ levels and protect DNA.
Improves Athletic Capacity: NMN has been shown to improve athletic performance and increase fat burning ability
Improve neurodegenerative diseases: Studies have shown that NMN can improve neurodegenerative diseases, such as Alzheimer's disease
NMN (Nicotinamide Mononucleotide) is a substance similar to vitamin B3, which can produce NAD+ (a key metabolic intermediate) in the body. Therefore, studies have shown that NMN may help improve aging-related health issues such as metabolism, immunity, cell repair, brain health, and more.
Currently, NMN supplements are mainly used to treat the following diseases:
Aging-related metabolic disorders such as diabetes, obesity, high cholesterol, etc.
Aging-related neurodegenerative diseases, such as Alzheimer's disease.
Aging-associated immune decline.
Aging-related cardiovascular disease.
NMN supplements are mainly used to increase NAD+ levels to improve metabolic diseases and slow down the aging process.
Improve metabolic diseases: Studies have shown that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity.
Delay the aging process: NMN can increase the vitality of cells, improve the metabolic process of cells, and delay the aging process.
Protect DNA: NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. Supplementing NMN can increase NAD+ levels and protect DNA.
Improves Athletic Capacity: NMN has been shown to improve athletic performance and increase fat burning ability
Improve neurodegenerative diseases: Studies have shown that NMN can improve neurodegenerative diseases, such as Alzheimer's disease
However, these studies were small, and NMN has not been shown to be effective in clinical trials, so further research is needed to determine the effectiveness of NMN supplements.
NMN supplements may cause side effects such as upset stomach, diarrhea, and nausea. There is also research showing that NMN supplements may affect insulin sensitivity and insulin levels, so people with diabetes should consult their doctor before taking them.
NMN supplements have not yet undergone large-scale clinical trials to verify their effectiveness. Currently, research on NMN supplements is mainly focused on animal and in vitro experiments. These studies show that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity, and can delay the aging process.
The long-term health effects of NMN supplementation are not well studied. Existing studies mainly focus on animal and in vitro experiments, which show that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity, and can delay the aging process. However, the results of these studies do not represent the long-term effects of NMN on human health.
1. Introduction Nicotinamide mononucleotide (NMN) supplementation has been suggested to hamper the inflammatory responses via restoring NAD+ level and downregulating the expression of Cyclooxygenase-2 (COX-2). Strikingly, both Aryl hydrocarbon receptor (AhR) and Indoleamine 2,3-Dioxygenase 1 (IDO1), two key enzymes for kynurenine production, can mediate the anti-inflammatory function of NMN in RAW 264.7 macrophages. 2. The alleviated inflammatory response in the presence of NMN supplementation For deciphering the impact of NMN in vivo, mice are subjected to daily intraperitoneal (i.p.) injection of NMN (500 mg/kg) for consecutive 6 days, followed by i.p. injection of lipopolysaccharides (LPS) (5 mg/kg) or alum (700 μg) on day 7. It is discovered that NMN supplementation suppresses LPS- or alum-induced inflammation in mice, as manifested by the downregulation of proinflammatory cytokines (IL-6 and IL-1β) and proinflammatory enzyme (COX-2). 3. The necessity of AhR for NMN-mediated inhibition of inflammatory response in macrophages AhR, a ligand-activated transcription factor, can mediate the anti-inflammatory function of NMN upon LPS treatment in RAW264.7 cells. Specifically, NMN reduces the expression of COX-2 in cells in bearing AHR. On the contrary. AhR inhibitor (CH223191) deprives the downregulation of IL-6, IL-1β and COX-2 caused by NMN treatment. Likewise, NMN treatment fails to reduce the expression levels of IL-6, IL-1β, and COX-2 in AhR knockout cells. 4. The importance of IDO1/kynurenine/AhR axis in the anti-inflammation function of NMN IDO1 is the rate-limiting enzyme in tryptophan catabolism to produce kynurenine, a metabolic intermediate in NAD+ de novo synthesis pathway. Kynurenine can promote the translocation of AhR from the cytoplasm to nucleus, thereby exerting an anti-inflammatory effect. NMN inhibits LPS-induced inflammation in a IDO1-kynurenine dependent manner in macrophages. 5. Conclusion NMN supplementation mitigates COX-2-associated inflammatory responses by activating lDO-kynurenine-AhR pathway, providing new insights into NAD* regulation in macrophage activation. Reference Liu J, Hou W, Zong Z, et al. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med. Published online February 8, 2024. doi:10.1016/j.freeradbiomed.2024.01.046 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Acute lung injury comprises a uniform response of the lung to inflammatory or chemical insults which is commonly caused by systemic illness including sepsis or trauma, infection with pathogens, and toxic gas inhalation. Sepsis-induced acute lung injury is a leading cause of morbidity and mortality worldwide, imposing substantial economic, social, and health burdens. Despite advances in knowledge of septic pulmonary pathologies over the years, efficient targeted therapies are still lacking. Notably, NMN administration has been uncovered to be effective in alleviating sepsis-induced acute lung injury, which can reduce cellular inflammation, oxidative stress, and apoptosis. 2. The impact of NMN upon macrophage polarization in LPS-induced MH-S cells In mouse alveolar macrophage cell line MH-S treated by lipopolysaccharide (LPS), NMN can facilitate the transformation of macrophages from pro-inflammatory M1 phenotype towards the anti-inflammatory M2 phenotype to promote inflammatory resolution and tissue repair, as evidenced by the downregulation of M1 phenotype-associated markers (iNOS and CD86+ F4/80+) and pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) as well as the upregulation of M2 phenotype-related markers (Arg1 and CD86+ F4/80+) and anti-inflammatory mediators (IL-10) post NMN administration. 3. The alleviation of LPS-induced lung injury post NMN administration In vitro, NMN represses the apoptosis and production of pro-inflammatory factors in LPS-stimulated MH-S cells. In vivo, NMN explicitly ameliorates LPS-induced pathological alterations, encompassing thickened alveolar wall, inflammatory cell infiltration, septa swelling, and erythrocyte exudation, in a murine septic model. 4. The association of SIRT1/NF-κB signaling activation with NMN-mediated macrophage polarization SIRT1/NF-κB signaling pathway is involved in the lung protection of NMN, as manifested by the elevated expression of SIRT1 as well as the reduced acetylation and phosphorylation of NF-κB-p65 post NMN treatment. Repression of SIRT1/NF-κB signaling offsets NMN-mediated M2 macrophage polarization. SIRT1 inhibitor EX-527 decreases the expression of SIRT1, yet increases the expression of acetylated and phosphorylated NF-κB-p65 in septic mice pretreated with NMN. In contrast to NMN, EX-527 overtly promotes the expression levels of M1 macrophage-associated markers (iNOS and CD86) while inhibiting those of M2 phenotype-related markers (Arg1 and CD206). 5. Conclusion NMN can effectively ameliorate LPS-induced acute lung injury through modulating macrophage polarization via SIRT1/NF-κB signalling pathway, providing a novel therapeutic direction for sepsis-induced acute lung injury. 6. Reference He, Simeng et al. “Nicotinamide mononucleotide alleviates endotoxin-induced acute lung injury by modulating macrophage polarization via the SIRT1/NF-κB pathway.” Pharmaceutical biology vol. 62,1 (2024): 22-32. doi:10.1080/13880209.2023.2292256 BONTAC NMN BONTAC is the leader of the global NMN industry, with the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 160 invention patents including 15 NMN patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. Both the high-quality product and excellent service can be better ensured in BONTA. BONTAC has 12 years of industry experience, which is worthy of your trust. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.
1. Introduction Gastric cancer (GC) represents a global health-care challenge, which is the fifth most common cancer and the fourth leading cause of cancer death across the world in 2020, with a significant incidence rate. Despite the efficacy of improved chemotherapy and surgical options, the prognosis of GC patients remains unsatisfactory. Remarkably, NAD+ is an intriguing target for cancer therapy by leverage of its impacts upon energy metabolism and pathway regulation. This research is engineered to probe into the magic roles of NAD+ metabolism-associated genes (NMRGs) in GC. 2. The establishment of prognostic risk model for GC patients Based on the expression levels of NAD+ metabolism-related genes in GC cell lines, a prognostic model is established for GC patients. Simply put, a total of 13 lncRNAs related to NMRGs are singled out by LASSO regression to construct prognostic risk model, with seven markedly up-regulated lncRNAs and six prominently down-regulated lncRNAs in GC tissues, as confirmed by real-time polymerase chain reaction. On this basis, six lncRNAs with the minimum likelihood of deviance corresponding to the first-rank value of Log (k) are chosen, followed by the plotting of model AUC and calculation of the risk score. The detailed calculation formula is listed below: risk score = AL139147.1 × (0.416) + AC107021.2 × (0.3119) + AC090825.1 × (0.1218) + AC005726.2 × (−0.0.0062) + AC012615.1 × (−0.0130) + AP001107.6 × (−0.0451). It is found that patients with high-risk scores have a poor prognosis. 3. The correlation between immune factors and risk scores The levels of immune cell infiltration, including CD8 T cells, CD4 naïve T cells, CD4 memory-activated T cells, B memory cells, and naïve B cells, are markedly associated with risk scores. Besides, high-risk patients show activated immune checkpoints as well as high immune and stromal scores. 4. The role of NAD+ in the metabolism of GC patients NAD+ not only promotes GC progression, but also promotes immune cell infiltration into tumors. The modulation of NAD+ is significant for the metabolism of GC patients. 5. Conclusion NMRGs may be promising biomarkers for predicting clinical outcomes of GC patients and ultimately facilitating their precise management. Reference Sun, X., Wen, H., Li, F., Bukhari, I., Ren, F., Xue, X., Zheng, P., & Mi, Y. (2023). NAD+ associated genes as potential biomarkers for predicting the prognosis of gastric cancer. Oncology research, 32(2), 283–296. https://doi.org/10.32604/or.2023.044618 BONTAC NAD and NMN BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and NMN. Bonzyme whole-enzymatic method is adopted, which is environmental-friendly, with no harmful solvent residues. The purity of products can reach up to 95%, which is benefited from the exclusive Bonpure seven-step purification technology. BONTAC has self-owned factories and has obtained a number of international certifications, where high quality and stable supply of products can be ensured. BONTAC has over 170 domestic and foreign patents, leading the industry of coenzyme and natural products. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.