NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
1、“Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability of production of NMN powder
3、Industrial leading technology: 15 domestic and international NMN patents
4、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMN powder
5、Multiple in vivo studies show that Bontac NMN powder is safe and effective
6、Provide one-stop product solution customization service
7、NMN raw material supplier of famous David Sinclair team of Harvard University.
NMN was only considered as a source of cellular energy and an intermediate in NAD+ biosynthesis, currently, the attention of the scientific community has been paid on anti-aging activity and a variety of health benefits and pharmacological activities of NMN which are related to the restoring of NAD+. Thus, NMN has therapeutic effects towards a range of diseases, including age-induced type 2 diabetes, obesity, cerebral and cardiac ischemia, heart failure and cardiomyopathies, Alzheimer’s disease and other neurodegenerative disorders, corneal injury, macular degeneration and retinal degeneration, acute kidney injury and alcoholic liver disease.
NMN powder in general is typically produced via chemical or enzymatic synthesis, or fermentation biosynthesis. There are pros and cons to all three methods.
Chemical synthesis is expensive and labor intensive, and all raw ingredients used are categorized as “unnatural,” i.e., not from biological systems. There are, however, some advantages from the manufacturer’s perspective. The yield is well suited to mass NMN powder production, and all of those unnatural raw ingredients can be carefully controlled. But there are a number of drawbacks as well. Some of the solvents used in the manufacturing process are seriously bad from an environmental standpoint, and impurities and by-products can be challenging to remove from the finished product – that’s seriously bad for the consumer.
Enzymatic production of NMN powder, on the other hand, is considered a “green preparation method.” Like the chemical route, it’s pricey, but it offers a higher yield and impressively high purity. The finished NMN ticks all the boxes – stable, easily absorbed, lightweight, low density, and a low molecular structure.
Fermentation has also been explored as a method of producing NMN, but yield, though high quality, is pretty abysmal, so many supplement companies quite sensibly look to other, more efficacious processes.
Aging, as a natural process is identified by downregulation of energy production in mitochondria of various organs such as brain, adipose tissue, skin, liver, skeletal muscle and pancreas due to the depletion of NAD+ . NAD+ levels in the body decrease as a consequence of increasing NAD+ consuming enzymes when aging There are three different biosynthesis pathways to produce NAD+ in mammalian cells including de novo synthesis from tryptophan, salt and Preiss-Handler pathways. Among these three pathways, NMN is an interproduct by is involved in NAD+ biosynthesis through salt and Preiss-Handler pathways. The salvage pathway is the most efficient and the main route for the NAD+ biosynthesis, in which nicotinamide and 5-phosphoribosyl-1-pyrophosphate are converted to NMN with the enzyme of NAMPT followed by conjugation to ATP and conversion to NAD by NMNAT. Furthermore, NAD+ consuming enzymes are responsible for degradation of NAD+ and consequence nt formation of nicotinamide as a by-product.
The safety of NMN powder cannot be assessed since required clinical and toxicological studies have not been completed yet to establish the recommended safe levels for long term administration. Nevertheless, their safety and efficacy are uncertain and unreliable since most of them have not been back by Rigorous scientific preclinical and clinical testing. This issue has been arisen as manufacturers are hesitant to pay for research and clinical trials due to potential lower profit margin, and there is no authorizing agency to regulate NMN products because it is often product sold as functional food than heavily regulated therapeutic drug. Therefore, more strict approval process has been demanded by consumer advocacy groups requesting regulatory agencies to set standard and restrictions for marketing anti-aging health products, considering safety, health and wellbeing of N red besumers. a panacea for the elderly, because boosting NAD levels when not required may yield some detrimental effects. Therefore, the dose and frequency of NMN supplementation should be carefully prescribed depending on the type of age-related deficiency and all other confronting health conditions of the people. Other NAD precursors over have been studied to diverse age-related deficiencies and they are used for particular deficiencies, only after they are proven for effectiveness and safe to use. Therefore, the same principle should be applied to NMN as well
First, inspect the factory. After some screening, NMN companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMN powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMN powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound ca n be preliminarily determined.
1. Introduction Rare ginsenosides, a group of dammarane triterpenoids that exist in low natural abundance, fuels a high concern from scholars recently, showing great potential as shining components in drugs and nutraceuticals. 2. The difference between primary ginsenosides and rare ginsenosides Ginsenosides are chiefly extracted from the plants of Araliaceae such as Panax ginseng, Panax notoginseng, and Panax quinquefolius. In light of their natural abundance, ginsenosides are usually divided into macro (primary) saponins (ginsenosides Rb1, Rg1, Re, Rd, etc.) and rare (secondary) ginsenosides (Rg5, Rk1, Rg3, etc). Relative to primary ginsenosides, rare ginsenosides are easy to be absorbed by human body, with much higher biological activity, membrane permeability and bioavailability. 3. The stereochemistry properties of rare ginsenosides The stereochemistry-driven difference in bioactivities is mostly focused on the 20(S/R)-Rg3 and 20(S/R)-Rh2 epimers. The stereochemistry properties confer rare ginsenosides with diverse bioactivities. Typically, the crucial factors that contribute to the efficacy of rare ginsenosises encompass the number of sugar molecules, sugar linkage and double bonds within C-17 side chain. For instance, the anti-tumor effect increased as the number of sugar moieties in a ginsenoside decreased. 4. Pharmacological activities of rare ginsenosides Rare ginsenosides serve as natural ligands for some specific receptors such as bile acid (FXR/TGR5), steroid hormone, estrogen, glucocorticoid, androgen, platelet adenosine diphosphate, which are determined to exert immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes. 5. The impact of rare ginsenosides upon gut microbiota In addition to above-mentioned pharmacological activities, rare ginsenosides are also contributive to maintaining the homeostasis of gut microbiota. Under normal physiological condition, there is a dynamic balance in gut microbiota, which would be disrupted in the onset and development of certain disease. Rare ginenosides can restore the decreased abundance of certain affected microbiota, regulating the intestinal microecology to influence the physiological function of the host. 6. Conclusion By leverage of the stereochemistry properties, rare ginsenosides exhibit superior bioactivity, opening up new opportunities for the discovery and development of drugs and nutraceuticals. Reference Szot JO, Cuny H, Martin EM, et al. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder. J Clin Invest. 2024;134(4):e174824. Published 2024 Feb 15. doi:10.1172/JCI174824 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Nicotinamide Mononucleotide (NMN) has been deemed as a functional nutrient for improving human intestinal health. In this study, an in vitro simulated digestion model is established under salivary and gastrointestinal conditions to determine the digestive properties of NMN, followed by the track of subsequent fermentation and its effect on the intestinal microbiota. 2. The digestion and fermentation of NMN No significant change is discernible in the molecular weight of NMN under salivary and gastrointestinal conditions. The hydrolysis rates of NMN to nicotinamide (NAM) in saliva, gastric juice and intestinal fluid are 3.0%, 1.9% and 4.2%, respectively, signifying that NMN can reach the colon without apparent difficulty. Post 24-h fermentation, NMN boosts the accumulation of propionate and butyrate by 88 % and 23 %, respectively, enhancing the abundance of beneficial genera (Bifidobacterium, Phascolarctobacterium, Faecalibacterium and Alistipes) and repressing proliferation of some harmful bacteria (Sutterella, Desulfovibrio and Pseudomonas) in human intestinal microbiota. 3. The intestine metabolic pathway of NMN Prior to being absorbed by the human body, NMN should be first transformed into nicotinamide ribose (NR), then degraded to NAM and converted to niacinate (NA). Concretely, intestinal microbiome degraded into various fermentation products such as NR, NAM, NA, etc., which are absorbed and utilized as nutrients by the intestinal microbiome. 4. The role of SCFAs in intestinal tract Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are the major products of carbohydrate fermentation in the colon, which can maintain normal gut function, bolster the absorption of sodium and calcium, promote digestion, facilitate the healing of injured intestinal mucosa, and prevent ulcers and enteritis. 5. The relationship between NMN, intestinal microbiota, and SCFAs NMN and its catabolism intermediates function as a carbon source for the proliferation of intestinal microbes during the in vitro NMN fermentation by human intestinal microbes. The low level of branched SCFAs in the NMN group is due to the breakdown of NMN by microorganisms into a variety of carbohydrates, including NAM and ribose. 6. Conclusion In addition to modulating the fermentation metabolites, NMN can regulate microbiota composition by promoting the proliferation of beneficial genera, providing a potent guarantee and support for intestinal health. Reference Tang Z, Bao P, Ling X, Qiu Z, Zhang B, Hao T. In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation of nicotinamide mononucleotide, and its effects on the gut microbiota. Food Res Int. 2024;177:113779. doi:10.1016/j.foodres.2023.113779 About BONTAC BONTAC has dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 160 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NMN. High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Mitochondria are the center of energy metabolism in cardiomyocytes, which are necessary for maintaining normal myocardial contractility and cardiac function. Typically, the development of cardiovascular disease is usually accompanied by mitochondrial dysfunction. Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. Notably, external replenishment of nicotinamide adenine dinucleotide (NAD+) precursors can enhance autophagy and mitochondrial quality control to maintain metabolic health, thereby regulate mitochondrial and cardiac function. 2. NAD+ metabolism in mitochondrial and cardiac function Cardiomyocytes accumulate NAD+ mostly within their mitochondria, where the bulk of cellular oxidation-reduction reactions occur. However, NAD+ is also present in the cytosol and nucleus, in which NAD+-derived metabolites and NAD+-dependent enzymes contribute to various cellular functions. 3. Mitochondrial and cardiac dysfunction induced by NAD+ deficiency Mitochondrial and cardiac dysfunction triggered by NAD+ deficiency is alleviated in cAtg3-KO mouse hearts post the administration of β-nicotinamide mononucleotide (NMN), as evidenced by the restoration of citrate synthase (CS) activity, partial normalization of ATP level and NPPB mRNA expression in cAtg3-KO mice as well as upregulation of ADP level in WT mouse hearts. Besides, NNMT inhibition can rescue mitochondrial and cardiac dysfunction in cAtg3-KO mice by restoring NAD+ level. 4. The impact of autophagic flux upon cardiac and mitochondrial function Autophagy is an intracellular degradation pathway that recycles subcellular components, playing a critical in modulating metabolic homeostasis. Autophagic flux, a central homeostatic mechanism that degrades materials toxic to cardiomyocytes, can mediate SQSTM1-NF-κB-NNMT signal transduction to control the cellular level of NAD+, thereby maintaining the mitochondrial and cardiac function. 5. Conclusion Autophagic flux may be a potential way to maintain the cellular level of NAD to regulate mitochondrial and cardiac fiunction. . Reference [1] Abdellatif M, Sedej S, Kroemer G. NAD+ Metabolism in Cardiac Health, Aging, and Disease. Circulation. 2021;144(22):1795-1817. doi:10.1161/CIRCULATIONAHA.121.056589 [2] Zhang Q, Li Z, Li Q, et al. Control of NAD+ homeostasis by autophagic flux modulates mitochondrial and cardiac function. EMBO J. Published online January 11, 2024. doi:10.1038/s44318-023-00009-w About BONTAC BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and NMN. Bonzyme whole-enzymatic method is adopted, which is environmental-friendly, with no harmful solvent residues. The purity of products can reach up to 95%, which is benefited from the exclusive Bonpure seven-step purification technology. BONTAC has self-owned factories and has obtained a number of international certifications, where high quality and stable supply of products can be ensured. BONTAC has over 160 domestic and foreign patents, leading the industry of coenzyme and natural products. In the future, BONTAC will actively expand the international market, and work with global partners to promote the prosperous development of synthetic biology industry. In this era full of challenges and opportunities, BONTAC is confident to make greater contributions to the cause of human health. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.