NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
when applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective, as at 500 µM concentration, it achieved “an almost 10- fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme become the mainstream method owing to the advantages of pollution free, high level of purity and stability.
1、“Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2、Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3、Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder
4、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5、Provide one-stop product solution customization service
NMNH also proved more effective than NMN in raising NAD+ levels in a variety of tissues when administered at the same concentration, confirming the results observed in cell lines. The data presented in this study also corroborate the evidence that NAD+ boosters protect against different models of acute kidney injury, and place NMNH as a great alternative intervention to other NAD+ precursors to reduce tubular damage and accelerate recovery.
To overcome the limitations of the current repertoire of NAD+ enhancers, other molecules with a more pronounced effect on the NAD+ intracellular pool are desired. This has stimulated us to investigate the use of the reduced form of nicotinamide mononucleotide (NMNH) as an NAD+ enhancer. There is very scarce information about the role of this molecule in cells. In fact, only one enzymatic activity has been described to produce NMNH. This is the NADH diphosphatase activity of the human peroxisomal Nudix hydrolase hNUDT1232 and the murine mitochondrial Nudt13.33 It has been postulated that, in cells, NMNH would be converted to NADH via nicotinamide mononucleotide adenylyl transferases (NMNATs).34 However, both NMNH production by Nudix diphosphatases and its use by NMNATs for NADH synthesis have only been described in vitro using isolated proteins, and how NMNH participates in cellular NAD+ metabolism remains unknown.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction Nicotinamide mononucleotide (NMN), one precursor of nicotinamide adenine dinucleotide (NAD+), has been ascertained to be implicated with multiple biological processes such as cellular redox regulation and metabolism as well as DNA repair. Herein, post-hoc analysis of a double-blinded clinical trial is carried out. On the premise of safety, to optimize NMN utilization, personalized dosage regimen can be developed by monitoring the NAD concentration. Research protocol A total of 80 healthy middle-aged adults (age: 40 to 65) are enrolled in the randomized, double-blinded, controlled clinical trial of NMN supplementation, who are randomly assigned into four groups and administrated with placebo or NMN (300 mg, 600 mg, or 900 mg) for 60 days. The clinical data including age, sex, body mass index (BMI), blood biological age, homeostatic model assessment for insulin resistance (HOMA-IR), blood NAD concentration, 6-minute walk test and 36-item short-form survey (SF-36), along with adverse events, are collected at baseline and after supplement, followed by comparison and correlation analysis. The association of participant clinical data at baseline and after supplement of NMN NAD concentration change (NADΔ) is dose-dependently increased post NMN supplementation, with a large coefficient of variation (29.2–113.3%) within group. Notably, only HOMA-IR has a prominent association with blood baseline NAD. As a whole, NMN supplementation has a positive impact on the physical endurance and general health conditions of healthy adults, as evidenced by the obvious improvement of six-minute walking distance, blood biological age, and SF-36 score. In addition, the increase of about 15 nmol/L in NADΔ is related to clinically improvements in the walking distance of 6-minute walk test and the SF-36 score. The safety oral dose of NMN in clinical trials As demonstrated by the registered clinical trials NCT04823260 and CTRI/2021/03/032421, NMN supplementation can boost blood NAD concentration, which is safe and well tolerated with daily oral administration of 900 mg. Strikingly, clinical efficacy expressed by blood NAD concentration and physical performance reaches highest at a dose of 600 mg daily oral intake. Conclusion Blood NAD concentration is increased by NMN supplement at a dose-dependent manner. Personalized regimen of NMN supplement should be based on the close monitoring of NAD concentration change. In addition to longer follow-up duration and large sample size, future trials on the efficacy of NMN supplement should pay much attention to the factors affecting baseline NAD concentration. Reference [1] Kuerec AH, Wang W, Yi L, et al. Towards personalized nicotinamide mononucleotide (NMN) supplementation: Nicotinamide adenine dinucleotide (NAD) concentration. Mech Ageing Dev. 2024;218:111917. doi:10.1016/j.mad.2024.111917 [2] Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Adv Nutr. 2023;14(6):1416-1435. doi:10.1016/j.advnut.2023.08.008 BONTAC NMN As David Sinclair, a famous professor of genetics at Harvard University, once pointed out in an interview, NMN has unstable molecular structure, which is easily degraded into nicotinamide if stored in the conventional environment. The satisfactory efficacy of NMN cannot be guaranteed if the quality and purity NMN products are not high. BONTAC is the first choice of NMN raw material suppliers worldwide, who has dedicated to the manufacture of raw material for enzyme and natural products for 12 years, with self-owned factory, 173 patents and professional R&D team. The purity of BONTAC NMN can reach up to 99.5%. Also, BONTAC is the NMN raw material supplier of David Sinclair team, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. The coenzyme products of BONTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Rare ginsenosides, a group of dammarane triterpenoids that exist in low natural abundance, fuels a high concern from scholars recently, showing great potential as shining components in drugs and nutraceuticals. 2. The difference between primary ginsenosides and rare ginsenosides Ginsenosides are chiefly extracted from the plants of Araliaceae such as Panax ginseng, Panax notoginseng, and Panax quinquefolius. In light of their natural abundance, ginsenosides are usually divided into macro (primary) saponins (ginsenosides Rb1, Rg1, Re, Rd, etc.) and rare (secondary) ginsenosides (Rg5, Rk1, Rg3, etc). Relative to primary ginsenosides, rare ginsenosides are easy to be absorbed by human body, with much higher biological activity, membrane permeability and bioavailability. 3. The stereochemistry properties of rare ginsenosides The stereochemistry-driven difference in bioactivities is mostly focused on the 20(S/R)-Rg3 and 20(S/R)-Rh2 epimers. The stereochemistry properties confer rare ginsenosides with diverse bioactivities. Typically, the crucial factors that contribute to the efficacy of rare ginsenosises encompass the number of sugar molecules, sugar linkage and double bonds within C-17 side chain. For instance, the anti-tumor effect increased as the number of sugar moieties in a ginsenoside decreased. 4. Pharmacological activities of rare ginsenosides Rare ginsenosides serve as natural ligands for some specific receptors such as bile acid (FXR/TGR5), steroid hormone, estrogen, glucocorticoid, androgen, platelet adenosine diphosphate, which are determined to exert immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes. 5. The impact of rare ginsenosides upon gut microbiota In addition to above-mentioned pharmacological activities, rare ginsenosides are also contributive to maintaining the homeostasis of gut microbiota. Under normal physiological condition, there is a dynamic balance in gut microbiota, which would be disrupted in the onset and development of certain disease. Rare ginenosides can restore the decreased abundance of certain affected microbiota, regulating the intestinal microecology to influence the physiological function of the host. 6. Conclusion By leverage of the stereochemistry properties, rare ginsenosides exhibit superior bioactivity, opening up new opportunities for the discovery and development of drugs and nutraceuticals. Reference Szot JO, Cuny H, Martin EM, et al. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder. J Clin Invest. 2024;134(4):e174824. Published 2024 Feb 15. doi:10.1172/JCI174824 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Ginseng has always been highly perceived as a valuable traditional Chinese medicine in China. Currently, much attention also has been paid to ginsenosides, the main active ingredients extracted from ginseng. Strikingly, ginsenoside Rh2, one of the most representative bioactive ginsenosides in Panax ginseng, has immunomodulatory, anti-inflammatory, and anti-tumor activities, showing a therapeutic role in numerous diseases. 2. The therapeutic effect of ginsenoside Rh2 * Enhance the immune function of the human body Ginsenoside Rh2 has the effect of enhancing the immune function of the patient's body. Notewothily, it can effectively reduce the toxicity left by chemotherapy in the human body by improving immunity. *Ameliorate neuropathic pain Intrathecal administration of ginsenoside Rh2 significantly attenuates SNI-induced mechanical allodynia and thermal hyperalgesia. The antinociceptive effect of Rh2 continued until 10 days after SNI surgeryn, showing a potential application value in pain therapy. Figure 1 Intrathecal injection of Rh2 inhibits neuropathic pain in mice * Suppress the inflammation Previous studies have revealed that ginsenoside Rh2 can inhibit spared nerve injury (SNI)-induced increase of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1 and interleukin-6), and significantly inhibit lipopolysaccharide (LPS)-induced activation of BV2 cells. Figure 2 Intrathecal injection of Rh2 reduced expression of proinflammatory cytokines IL-1, IL-6 and TNF-α in SNI mice * Promote the synthesis of albumin Ginsenoside Rh2 acts as an immune regulator to promote the synthesis of albumin, which can provide heat for the human body, protect and stabilize the immunoglobulin in the blood. * Inhibit the growth of tumor cells Ginsenoside Rh2 exhibits a chemical structure similar to that of dexamethasone. In in vitro studies, it can suppress the growth and viability of various cancer cells, induce tumor cell cycle arrest and cellular apoptosis, trigger necrosis and autophagy in cancer cells, inhibit metastasis, and suppress angiogenesis. * Reversal of abnormal tumor differentiation Ginsenoside Rh2 has a differentiation-inducing effect on tumor cancer cells, and can effectively enhance the melanin production ability in cancer cells, thereby causing cancer cells to transform into normal cells in morphology. Table 1 Anticancer effects and mechanisms of ginsenoside‑Rh2 in in vivo studies 3. The difference between ginsenoside Rg3 and ginsenoside Rh2 Figure 3 Molecular struction of ginsenoside Rg3 and ginsenoside Rh2 Both ginsenoside Rg3 and ginsenoside Rh2 have been attested to achieve antitumor effects by strengthening the immune function of the body. Despite their similar mechanisms of action, differences still exist between ginsenoside Rg3 and ginsenoside Rh2. In terms of the molecular structure, ginsenoside Rh2 has only one glycosyl group, whereas ginsenoside Rg3 has two. In addition, ginsenoside Rh2 has a higher bioavailability than ginsenoside Rg3. Ginsenoside Rg3 is easy to be excreted from the body after being taken, and won't make much difference to the body. With regard to the intestinal absorption, ginsenotone Rh2 is about 5 times of ginsenotone Rg3. 4. Conclusion The monosaccharide ginsenoside Rh2 can effectively improve human immunity, enhance disease resistance, and reduce the risk of cancer. Relative to ginsenoside Rg3, ginsenoside Rh2 shows higher cost-efficiency in the intestinal absorption, application scope and efficacy, providing an upgraded health support. Product Features and advantages of BONTAC Ginsenoside Rh2 One-stop product solution customization service Multiple patents and strict third-party self-inspection The first national mass production of ginsenosides by enzymatic synthesis Unique Bonzyme enzymatic synthesis technology Reference [1] Fu, Yuan-Yuan et al. Ginsenoside Rh2 Ameliorates Neuropathic Pain by inhibition of the miRNA21-TLR8-mitogen-activated protein kinase axis. Molecular pain. 2022;18:17448069221126078. doi:10.1177/17448069221126078 [2] He XL, Xu XH, Shi JJ, et al. Anticancer Effects of Ginsenoside Rh2: A Systematic Review. Curr Mol Pharmacol. 2022;15(1):179-189. doi:10.2174/1874467214666210309115105 Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.