NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme becomes the mainstream method owing to the advantages of pollution free, high level of purity and
When applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective , as at 500 µM concentration, it achieved “an almost 10-fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
1. "Bonzyme" Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3. Exclusive “Bonpure” seven-step purification technology, high purity (up to 99%) and stability of production of NMNH powder
4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5. Provide one-stop product solution customization service
NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.
Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
On August 10, 2021, researchers from Shanghai University of Science and Technology published an article titled NAD+ supplement potentiates tumor killing function by rescuing defective TUBBY-mediated NAMPT transcription in tumor infiltrated T cells in Cell Reports, revealing that NAD+ in supplemented during CAR-T therapy and immune checkpoint inhibitor therapy, it can improve the anti-tumor activity of T. At present, the supplementary precursor of NAD+, as a nutritional product,has been verified for human consumption safety.This achievement provides a simply and feasible new method for improving the anti-tumor activity of T cells. Cancer immunotherapies including the adoptive transfer of naturally occurring tumor-infiltrating lymphocytes (TILs) and genetically engineered T cells, as well as the use of immune checkpoint blockade (ICB) to boost the function of T cells, have emerged as promising approaches to achieve durable clinical responses of otherwise treatment-refractory cancers (Lee et al., 2015; Rosenberg and Restifo, 2015; Sharma and Allison, 2015). Although immunotherapies have been successfully used in the clinic, the number of patients benefiting from them is still limited (Fradet et al., 2019; Newick et al., 2017). Tumor microenvironment (TME)-related immunosuppression has emerged as the major reason for low and/or no response to both immunotherapies (Ninomiya et al., 2015; Schoenfeld and Hellmann, 2020). Therefore, efforts to investigate and overcome TME-related limitations in immune therapies are of great urgency. The fact that immune cells and cancer cells share many fundamental metabolic pathways implies an irreconcilable competition for nutrients in TME (Andrejeva and Rathmell, 2017; Chang et al., 2015). During uncontrolled proliferation, cancer cells hijack alternative pathways for more rapid metabolite generation (Vander Heiden et al., 2009). As a consequence, nutrient depletion, hypoxia, acidity, and generation of metabolites that can be toxic in the TME may hinder successful immunotherapy (Weinberg et al., 2010). Indeed, TILs often experience mitochondrial stress within growing tumors and become exhausted (Scharping et al., 2016). Interestingly, multiple studies also indicate that metabolic changes in TME could re-shape T cell differentiation and functional activity (Bailis et al., 2019; Chang et al., 2013; Peng et al., 2016). All these evidences inspired us to hypothesize that metabolic reprogramming in T cells might rescue them from a stressed metabolic environment, thereby reinvigorating their anti-tumor activity (Buck et al., 2016; Zhang et al., 2017). In this current study, by integrating both genetic and chemical screens, we identified that NAMPT, a key gene involved in NAD+ biosynthesis, was essential for T cell activation. NAMPT inhibition led to robust NAD+ decline in T cells, thereby disrupting glycolysis regulation and mitochondrial function, blocking ATP synthesis, and dampening the T cell receptor (TCR) downstream signaling cascade. Building on the observation that TILs have relatively lower NAD+ and NAMPT expression levels than T cells from peripheral blood mononuclear cells (PBMCs) in ovarian cancer patients, we performed genetic screening in T cells and identified that Tubby (TUB) is a transcription factor for NAMPT. Finally, we applied this basic knowledge in the (pre) clinic and showed very strong evidence that supplementation with NAD+ dramatically improves the anti-tumor killing activity both in adoptively transferred CAR-T cells therapy and immune check point blockade therapy, indicating their promising potential for targeting NAD+ metabolism to better treat cancers. 1.NAD+ regulates the activation of T cells by affecting energy metabolism After antigen stimulation, T cells undergo metabolic reprogramming, from mitochondrial oxidation to glycolysis as the main source of ATP. While maintaining sufficient mitochondrial functions to support cell proliferation and effector functions.Given that NAD+ is the main coenzyme for redox, the researchers verified the effect of NAD+ on the level of metabolism in T cells through experiments such as metabolic mass spectrometry and isotope labeling. The results of in vitro experiments show that NAD+ deficiency will significantly reduce the level of glycolysis, TCA cycle and electron transport chain metabolism in T cells. Through the experiment of replenishing ATP, the researchers found that the lack of NAD+ mainly inhibits the production of ATP in T cells, thereby reducing the level of T cell activation. 2.The NAD+ salvage synthesis pathway regulated by NAMPT is essential for T cell activation The metabolic reprogramming process regulates the activation and differentiation of immune cells. Targeting T cell metabolism provides an opportunity to modulate the immune response in a cellular way. Immune cells in the tumor microenvironment, their own metabolic level will also be correspondingly affected. The researchers in this article have discovered the important role of NAMPT in the activation of T cells through genome-wide sgRNA screening and metabolism-related small molecule inhibitor screening experiments. Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions and can be synthesized through the salvage pathway, de novo synthesis pathway, and Preiss-Handler pathway. The NAMPT metabolic enzyme is mainly involved in the NAD+ salvage synthesis pathway. Analysis of clinical tumor samples found that in tumor-infiltrating T cells, their NAD+ levels and NAMPT levels were lower than other T cells. Researchers speculate that NAD+ levels may be one of the factors that affect the anti-tumor activity of tumor-infiltrating T cells. 3.Supplement NAD+ to enhance the anti-tumor activity of T cells Immunotherapy has been exploratory research in cancer treatment, but the main problem is the best treatment strategy and the effectiveness of immunotherapy in the overall population. Researchers want to study whether enhancing the activation ability of T cells by supplementing NAD+ levels can enhance the effect of T cell-based immunotherapy. At the same time, in the anti-CD19 CAR-T therapy model and anti-PD-1 immune checkpoint inhibitor therapy model, it was verified that supplementation of NAD+ significantly enhanced the tumor-killing effect of T cells. The researchers found that in the anti-CD19 CAR-T treatment model, almost all mice in the CAR-T treatment group supplemented with NAD+ achieved tumor clearance, while the CAR-T treatment group without NAD+ supplemented only about 20 % Of mice achieved tumor clearance. Consistent with this, in the anti-PD-1 immune checkpoint inhibitor treatment model, B16F10 tumors are relatively tolerant to anti-PD-1 treatment, and the inhibitory effect is not significant. However, the growth of B16F10 tumors in the anti-PD-1 and NAD+ treatment group could be significantly inhibited. Based on this, NAD+ supplementation can enhance the anti-tumor effect of T cell-based immunotherapy. 4.How to supplement NAD+ The NAD+ molecule is large and cannot be directly absorbed and utilized by the human body. The NAD+ directly ingested orally is mainly hydrolyzed by brush border cells in the small intestine. In terms of thinking, there is indeed another way to supplement NAD+, which is to find a way to supplement a certain substance so that it can synthesize NAD+ autonomously in the human body. There are three ways to synthesize NAD+ in the human body: Preiss-Handler pathway, de novo synthesis pathway and salvage synthesis pathway. Although the three ways can synthesize NAD+, there is also a primary and secondary distinction. Among them, the NAD+ produced by the first two synthetic pathways only accounts for about 15% of the total human NAD+, and the remaining 85% is achieved through the way of remedial synthesis. In other words, the salvage synthesis pathway is the key to the human body to supplement NAD+. Among the precursors of NAD+, nicotinamide (NAM), NMN and nicotinamide ribose (NR) all synthesize NAD+ through a salvage synthesis pathway, so these three substances have become the body's choice for supplementing NAD+. Although NR itself has no side effects, in the process of NAD+ synthesis, most of it is not directly converted into NMN, but needs to be digested into NAM first, and then participate in the synthesis of NMN, which still cannot escape the limitation of rate-limiting enzymes. Therefore, the ability to supplement NAD+ through oral administration of NR is also limited . As a precursor for supplementing NAD+, NMN not only bypasses the restriction of rate-limiting enzymes, but is also absorbed very quickly in the body and can be directly converted into NAD+. Therefore, it can be used as a direct, rapid and effective method to supplement NAD+. Expert Reviews: Xu Chenqi (Excellence and Innovation Center of Molecular Cell Science, Chinese Academy of Sciences, Immunology Research Expert) Cancer treatment is a problem in the world. The development of immunotherapy has made up for the limitations of traditional cancer treatment and expanded the treatment methods of doctors. Cancer immunotherapy can be divided into immune checkpoint blocking therapy, engineered T cell therapy, tumor vaccine, etc. These treatment methods have played a certain role in the clinical treatment of cancer. At the same time, this also makes the current focus of immunotherapy research on how to further enhance the effect of immunotherapy and expand the beneficiaries of immunotherapy.
Introduction Nicotinamide mononucleotide (NMN), one precursor of nicotinamide adenine dinucleotide (NAD+), has been ascertained to be implicated with multiple biological processes such as cellular redox regulation and metabolism as well as DNA repair. Herein, post-hoc analysis of a double-blinded clinical trial is carried out. On the premise of safety, to optimize NMN utilization, personalized dosage regimen can be developed by monitoring the NAD concentration. Research protocol A total of 80 healthy middle-aged adults (age: 40 to 65) are enrolled in the randomized, double-blinded, controlled clinical trial of NMN supplementation, who are randomly assigned into four groups and administrated with placebo or NMN (300 mg, 600 mg, or 900 mg) for 60 days. The clinical data including age, sex, body mass index (BMI), blood biological age, homeostatic model assessment for insulin resistance (HOMA-IR), blood NAD concentration, 6-minute walk test and 36-item short-form survey (SF-36), along with adverse events, are collected at baseline and after supplement, followed by comparison and correlation analysis. The association of participant clinical data at baseline and after supplement of NMN NAD concentration change (NADΔ) is dose-dependently increased post NMN supplementation, with a large coefficient of variation (29.2–113.3%) within group. Notably, only HOMA-IR has a prominent association with blood baseline NAD. As a whole, NMN supplementation has a positive impact on the physical endurance and general health conditions of healthy adults, as evidenced by the obvious improvement of six-minute walking distance, blood biological age, and SF-36 score. In addition, the increase of about 15 nmol/L in NADΔ is related to clinically improvements in the walking distance of 6-minute walk test and the SF-36 score. The safety oral dose of NMN in clinical trials As demonstrated by the registered clinical trials NCT04823260 and CTRI/2021/03/032421, NMN supplementation can boost blood NAD concentration, which is safe and well tolerated with daily oral administration of 900 mg. Strikingly, clinical efficacy expressed by blood NAD concentration and physical performance reaches highest at a dose of 600 mg daily oral intake. Conclusion Blood NAD concentration is increased by NMN supplement at a dose-dependent manner. Personalized regimen of NMN supplement should be based on the close monitoring of NAD concentration change. In addition to longer follow-up duration and large sample size, future trials on the efficacy of NMN supplement should pay much attention to the factors affecting baseline NAD concentration. Reference [1] Kuerec AH, Wang W, Yi L, et al. Towards personalized nicotinamide mononucleotide (NMN) supplementation: Nicotinamide adenine dinucleotide (NAD) concentration. Mech Ageing Dev. 2024;218:111917. doi:10.1016/j.mad.2024.111917 [2] Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Adv Nutr. 2023;14(6):1416-1435. doi:10.1016/j.advnut.2023.08.008 BONTAC NMN As David Sinclair, a famous professor of genetics at Harvard University, once pointed out in an interview, NMN has unstable molecular structure, which is easily degraded into nicotinamide if stored in the conventional environment. The satisfactory efficacy of NMN cannot be guaranteed if the quality and purity NMN products are not high. BONTAC is the first choice of NMN raw material suppliers worldwide, who has dedicated to the manufacture of raw material for enzyme and natural products for 12 years, with self-owned factory, 173 patents and professional R&D team. The purity of BONTAC NMN can reach up to 99.5%. Also, BONTAC is the NMN raw material supplier of David Sinclair team, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. The coenzyme products of BONTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Oxidized form of nicotinamide adenine dinucleotide (NAD+) and its precursor nicotinamide mononucleotide (NMN) have been uncovered to restore DNA repair and prevent cancer progression via the deleted in breast cancer 1 (DBC1). This research is committed to deciphering the detailed molecular mechanisms. About DBC1 DBC1 is a nuclear protein initially cloned from a human chromosome 8p21 region, which can modulate diversified targets by protein-protein interaction, contributing to various cellular processes such as apoptosis, DNA repair, senescence, transcription, metabolism, circadian cycle, epigenetic regulation, cell proliferation, and tumorigenesis. The affinity and molecular binding mechanisms between NAD+/NMN and DBC1354–396 Under the help of nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments, it is verified that both NAD+ and NMN have a binding relationship with the NHD domain of DBC1. Specifically, NAD+ interacts with DBC1354-396 through hydrogen bonds, with a binding affinity (8.99 μM) nearly twice that of NMN (17.0 μM) and the key binding sites are primarily residues E363 and D372. The vital roles of E363 and D372 mutagenesis in ligand-protein interaction The N-terminal loop of DBC1354-396 encloses the small ligand within a local space, anchoring NAD+ and NMN to the protein through key amino acid residues E363 and D372 via hydrogen bonding. Conclusion Both NAD+ and its precursor NMN can bind to DBC1's NHD domain (DBC1354–396) at key sites E363 and D372, providing novel clues for the development of targeted therapies and drug research on DBC1-associated disease including tumors. Reference Ou L, Zhao X, Wu IJ, et al. Molecular mechanism of NAD+ and NMN binding to the Nudix homology domains of DBC1. Int J Biol Macromol. Published online February 12, 2024. doi:10.1016/j.ijbiomac.2024.130131 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.