NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NADH manufacturer | NADH and NAD+ are a pair of redox pairs in cells, NADH is the reduced form of coenzyme 1NAD, and NAD+ is its oxidized form. In redox reactions, NADH acts as a donor of hydrogen and electrons, and NAD+ acts as an acceptor of hydrogen and electrons, participating in physiological processes such as respiration, photosynthesis, and alcohol metabolism. They participate in life activities as coenzymes of many oxidation-reduction reactions in organisms and transform each other. Under anaerobic conditions, glucose metabolism produces very little ATP, while under aerobic conditions, NADH or FADH2 produced through glycolysis and tricarboxylic acid cycle can produce a large amount of ATP through oxidative phosphoric acid reaction. The amount of NADH is directly related to the amount of ATP produced, the more NADH each cell contains, the more energy it produces. Organs that require more energy will contain (or require) higher amounts of NADH.
1. Prevention and treatment of viral-induced inflammatory stormsScientists have found after extensive research that neo-coronavirus has a mechanism similar to SARS virus to activate inflammatory vesicles NLRP3. and the activation of NLRP3 produces more inflammatory factors, generating excessive inflammation and thus triggering a deadly cytokine storm. This problem can be well addressed by NAD+, which inhibits the activity of NF-κB inflammatory pathway and NLRP3 inflammasome by increasing the activity of sirtuins (SIRT1, SIRT2 and SIRT3), thus preventing cytokine storm caused by excessive inflammation. Therefore, Sinclair and other scientists believe that increasing the concentration of NAD+ may play an important role in the prevention and treatment of neocoronavirus and other viral infections.2. Restoration of virus-induced metabolic disordersNAD+ is an essential coenzyme for many cellular energy metabolic pathways, present in every cell of the body, involved in thousands of reactions, and an important player in maintaining cellular viability. In the COVID-19 infection model, NAD+ and NMN supplementation was found to be effective in alleviating cell death and protecting the lung.
The action of supplemental NADH is unclear. Oral NADH supplementation has been used to combat simple fatigue as well as such mysterious and energy-sapping disorders as chronic fatigue syndrome and fibromyalgia. Researchers are also studying the value of NADH supplements for improving mental function in people with Alzheimer's disease, and minimizing physical disability and relieving depression in people with Parkinson's disease. Some healthy individuals also take NADH supplements orally to improve concentration and memory capacity, as well as to increase athletic endurance. However, to date there have been no published studies to indicate that using NADH is in any way effective or safe for these purposes
First, inspect the factory. After some screening, NADH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NADH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NADH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction Intervertebral disc degeneration (IDD) is a frequently seen orthopedic disease, which is accompanied with excessive apoptosis of nucleus pulposus cells (NPCs) and degeneration of extracellular matrix (ECM), with main symptoms of pain and numbness in the waist, legs and feet, as well as inflammation on and around the surface of bone tissues. Strikingly, ginsenoside Rg3, the main active ingredient of ginseng, has been attested to exhibit anti-catabolic and anti-apoptotic effects in IL-1β-treated human NPCs and IDD rats by inactivating the p38 MAPK pathway. The risk factors for IDD IDD is generally associated with risk factors such as aging, excessive exercise, working environment, and genetics. As one ages, the amount of water in the body and in the intervertebral discs will be reduced accordingly. Intervertebral discs that lack moisture will lose their elastic function and become hard. Once there is any stimulation or pressure, the intervertebral disc may crack, leading to intervertebral disc injury. For instance, the mechanical trauma caused by excessive exercise and work may accelerate the fragility of disc and exacerbate IDD. Anti-catabolic and anti-apoptotic effects of ginsenoside Rg3 in IL-1β-treated human NPCs and IDD rats Ginsenoside Rg3 plays an anti-apoptotic role in IL-1β-treated human NPCs and IDD rats, as evidenced by the down-regulation of pro-apoptosis protein Bax and up-regulation of anti-apoptosis protein Bcl-2 in IL-1β-stimulated NPCs and IDD model rats. Besides, ginsenoside Rg3 represses ECM degradation in IL-1β-stimulated NPCs and intervertebral disc tissues of IDD rats, as attested by the decreased expression of ECM degradation-related factors MMPs (MMP2 and MMP3) and ADAMTSs (Adamts4, and Adamts5). Ginsenoside Rg3 exhibits anti-catabolic and anti-apoptotic effects in IL-1β-treated human NPCs. Ginsenoside Rg3 reduces apoptosis and catabolism in IDD rats. Alleviation of ginsenoside Rg3 in IDD via p38 MAPK pathway Ginsenoside Rg3 can alleviate NPC degeneration, recover the arrangement of annulus fibrous, and preserve more proteoglycan matrix via inactivating p38 MAPK pathway. In vitro, the fluorescence intensity of p38 is enhanced in IL-1β-stimulated NPCs, yet ginsenoside Rg3 offsets this promoting effect. In vivo, the phosphorylated p38 level is elevated in NPCs and the intervertebral disc tissues of IDD rats, while ginsenoside Rg3 works inversely. Ginsenoside Rg3 suppresses the IL-1β-stimulated p38 MAPK pathway in human NPCs Ginsenoside Rg3 inactivates the p38 MAPK pathway in IDD rats. Conclusion The anti-catabolic and anti-apoptotic effects of ginsenoside Rg3 in IL-1β treated human disc nucleus pulposus cells and in a rat model of disc degeneration are accomplished by inactivating the MAPK pathway, providing new clues on the treatment of IDD. Reference Chen J, Zhang B, Wu L, et al. Ginsenoside Rg3 exhibits anti-catabolic and anti-apoptotic effects in IL-1β treated human disc nucleus pulposus cells and in a rat model of disc degeneration by inactivating the MAPK pathway. Cell Mol Biol. 2024;70(1):233-238. doi:10.14715/cmb/2024.70.1.32 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be responsible or liable in any way for any claims, damages, losses, expenses or costs resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Ginseng has always been highly perceived as a valuable traditional Chinese medicine in China. Currently, much attention also has been paid to ginsenosides, the main active ingredients extracted from ginseng. Strikingly, ginsenoside Rh2, one of the most representative bioactive ginsenosides in Panax ginseng, has immunomodulatory, anti-inflammatory, and anti-tumor activities, showing a therapeutic role in numerous diseases. 2. The therapeutic effect of ginsenoside Rh2 * Enhance the immune function of the human body Ginsenoside Rh2 has the effect of enhancing the immune function of the patient's body. Notewothily, it can effectively reduce the toxicity left by chemotherapy in the human body by improving immunity. *Ameliorate neuropathic pain Intrathecal administration of ginsenoside Rh2 significantly attenuates SNI-induced mechanical allodynia and thermal hyperalgesia. The antinociceptive effect of Rh2 continued until 10 days after SNI surgeryn, showing a potential application value in pain therapy. Figure 1 Intrathecal injection of Rh2 inhibits neuropathic pain in mice * Suppress the inflammation Previous studies have revealed that ginsenoside Rh2 can inhibit spared nerve injury (SNI)-induced increase of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1 and interleukin-6), and significantly inhibit lipopolysaccharide (LPS)-induced activation of BV2 cells. Figure 2 Intrathecal injection of Rh2 reduced expression of proinflammatory cytokines IL-1, IL-6 and TNF-α in SNI mice * Promote the synthesis of albumin Ginsenoside Rh2 acts as an immune regulator to promote the synthesis of albumin, which can provide heat for the human body, protect and stabilize the immunoglobulin in the blood. * Inhibit the growth of tumor cells Ginsenoside Rh2 exhibits a chemical structure similar to that of dexamethasone. In in vitro studies, it can suppress the growth and viability of various cancer cells, induce tumor cell cycle arrest and cellular apoptosis, trigger necrosis and autophagy in cancer cells, inhibit metastasis, and suppress angiogenesis. * Reversal of abnormal tumor differentiation Ginsenoside Rh2 has a differentiation-inducing effect on tumor cancer cells, and can effectively enhance the melanin production ability in cancer cells, thereby causing cancer cells to transform into normal cells in morphology. Table 1 Anticancer effects and mechanisms of ginsenoside‑Rh2 in in vivo studies 3. The difference between ginsenoside Rg3 and ginsenoside Rh2 Figure 3 Molecular struction of ginsenoside Rg3 and ginsenoside Rh2 Both ginsenoside Rg3 and ginsenoside Rh2 have been attested to achieve antitumor effects by strengthening the immune function of the body. Despite their similar mechanisms of action, differences still exist between ginsenoside Rg3 and ginsenoside Rh2. In terms of the molecular structure, ginsenoside Rh2 has only one glycosyl group, whereas ginsenoside Rg3 has two. In addition, ginsenoside Rh2 has a higher bioavailability than ginsenoside Rg3. Ginsenoside Rg3 is easy to be excreted from the body after being taken, and won't make much difference to the body. With regard to the intestinal absorption, ginsenotone Rh2 is about 5 times of ginsenotone Rg3. 4. Conclusion The monosaccharide ginsenoside Rh2 can effectively improve human immunity, enhance disease resistance, and reduce the risk of cancer. Relative to ginsenoside Rg3, ginsenoside Rh2 shows higher cost-efficiency in the intestinal absorption, application scope and efficacy, providing an upgraded health support. Product Features and advantages of BONTAC Ginsenoside Rh2 One-stop product solution customization service Multiple patents and strict third-party self-inspection The first national mass production of ginsenosides by enzymatic synthesis Unique Bonzyme enzymatic synthesis technology Reference [1] Fu, Yuan-Yuan et al. Ginsenoside Rh2 Ameliorates Neuropathic Pain by inhibition of the miRNA21-TLR8-mitogen-activated protein kinase axis. Molecular pain. 2022;18:17448069221126078. doi:10.1177/17448069221126078 [2] He XL, Xu XH, Shi JJ, et al. Anticancer Effects of Ginsenoside Rh2: A Systematic Review. Curr Mol Pharmacol. 2022;15(1):179-189. doi:10.2174/1874467214666210309115105 Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.
From December 16 to 18,2020, the 20th World Pharmaceutical Raw Materials China Exhibition (CPhI China 2020) was successfully held in Shanghai New International Expo Center. Bangtai Biological Engineering (Shenzhen) Co., Ltd. (hereinafter referred to as "BONTAC"), as an important exhibitor, with the company NADH, NAD and other star products in the E4F38 booth hardcore debut.