NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
The Chinese name of NMNH is "reduced nicotinamide mononucleotide". NMNH is an amorphous yellow powder. NMNH increases NAD+ levels faster and at a higher concentration, on average 5 times that of NMN. NMNH has been industrialized and has a purity of ≥99%. It is available in two forms: free acid and sodium salt.
NMNH also proved more effective than NMN in raising NAD+ levels in a variety of tissues when administered at the same concentration, confirming the results observed in cell lines. The data presented in this study also corroborate the evidence that NAD+ boosters protect against different models of acute kidney injury, and place NMNH as a great alternative intervention to other NAD+ precursors to reduce tubular damage and accelerate recovery.
To overcome the limitations of the current repertoire of NAD+ enhancers, other molecules with a more pronounced effect on the NAD+ intracellular pool are desired. This has stimulated us to investigate the use of the reduced form of nicotinamide mononucleotide (NMNH) as an NAD+ enhancer. There is very scarce information about the role of this molecule in cells. In fact, only one enzymatic activity has been described to produce NMNH. This is the NADH diphosphatase activity of the human peroxisomal Nudix hydrolase hNUDT1232 and the murine mitochondrial Nudt13.33 It has been postulated that, in cells, NMNH would be converted to NADH via nicotinamide mononucleotide adenylyl transferases (NMNATs).34 However, both NMNH production by Nudix diphosphatases and its use by NMNATs for NADH synthesis have only been described in vitro using isolated proteins, and how NMNH participates in cellular NAD+ metabolism remains unknown.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction Oxidized form of nicotinamide adenine dinucleotide (NAD+) and its precursor nicotinamide mononucleotide (NMN) have been uncovered to restore DNA repair and prevent cancer progression via the deleted in breast cancer 1 (DBC1). This research is committed to deciphering the detailed molecular mechanisms. About DBC1 DBC1 is a nuclear protein initially cloned from a human chromosome 8p21 region, which can modulate diversified targets by protein-protein interaction, contributing to various cellular processes such as apoptosis, DNA repair, senescence, transcription, metabolism, circadian cycle, epigenetic regulation, cell proliferation, and tumorigenesis. The affinity and molecular binding mechanisms between NAD+/NMN and DBC1354–396 Under the help of nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments, it is verified that both NAD+ and NMN have a binding relationship with the NHD domain of DBC1. Specifically, NAD+ interacts with DBC1354-396 through hydrogen bonds, with a binding affinity (8.99 μM) nearly twice that of NMN (17.0 μM) and the key binding sites are primarily residues E363 and D372. The vital roles of E363 and D372 mutagenesis in ligand-protein interaction The N-terminal loop of DBC1354-396 encloses the small ligand within a local space, anchoring NAD+ and NMN to the protein through key amino acid residues E363 and D372 via hydrogen bonding. Conclusion Both NAD+ and its precursor NMN can bind to DBC1's NHD domain (DBC1354–396) at key sites E363 and D372, providing novel clues for the development of targeted therapies and drug research on DBC1-associated disease including tumors. Reference Ou L, Zhao X, Wu IJ, et al. Molecular mechanism of NAD+ and NMN binding to the Nudix homology domains of DBC1. Int J Biol Macromol. Published online February 12, 2024. doi:10.1016/j.ijbiomac.2024.130131 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1.Introduction The senescence in mammals is generally concomitant with the dysregulation of intestinal homeostasis and the accumulation of mitochondrial DNA (mtDNA) mutations. High-burden mtDNA mutations lead to NAD+ depletion and activate the transcription factor ATF5-dependent UPRmt, which in turn promotes and exacerbates the intestinal senescence phenotype. By supplementation with the NAD+ precursor NMN, this intestinal senescence phenotype can be rescued to some extent, as evidenced by the recovery of intestinal organoid differentiation and the increased number of intestinal stem cells. 2. NAD+ depletion during intestinal senescence caused by mtDNA mutations There is impairment of NADH/NAD+ redox in Mut/Mut*** intestines, as manifested by the enriched NADH dehydrogenase complex assembly pathway. Through transfection of intestinal crypt cells with SoNar (a NADH/NAD+ sensor), a higher NADH/NAD+ ratio is observed in Mut/Mut*** mice, hinting the perturbed redox potential. Likewise, following transfection of intestinal crypt cells with FiNad (a NAD+ sensor), less NAD+ content is discovered in the Mut/Mut*** cells. All of these findings mirror NAD+ depletion in the intestinal senescence triggered by mtDNA mutations. Note: mtDNA mutations are classified into four types: negligible (WT/WT), low (WT/WT*), moderate (WT/Mut**) and high (Mut/Mut***). 3. The link between mtDNA mutation content and physiological intestinal senescence The small intestine of aged mouse intestine is characterized by decreased intestinal crypt number, increased villus length, higher expression of CDKN1A/p21 (a well-known senescence marker) and shorter telomere length, which is accompanied by accumulation of mtDNA mutations, primarily low-frequency (less than 0.05) point mutations. 4. LONP1 protein as a candidate marker for intestinal senescence caused by accumulated mtDNA mutations Mitochondrial unfolded protein response (UPRmt) is activated by a variety of mitochondrial stresses, including protein imbalances between mitochondria and the nucleus as well as impaired mitochondrial protein transport. The hallmarks of UPRmt are increased protein expression levels of LONP1, HSP60 and ClpP. Noteworthily, only LONP1 protein is specifically upregulated in senescent UPRmt activation triggered by accumulated mtDNA mutations, which may be a candidate biomarker for intestinal senescence. 5. The role of NAD+ in intestinal senescence induced by elevated mtDNA mutations. NAD+ repletion in vivo alleviates the small intestine senescent phenotypes caused by mtDNA mutation burden, and rescues the decreased colony formation efficiency in Mut/Mut*** intestinal organoids. NAD+-dependent UPRmt triggered by mtDNA mutations regulates intestinal senescence. These data further indicate that NAD+ depletion functions as a key mediator of the intestinal senescence induced by accumulated mtDNA mutations. 6. The role of NAD+ in the signal pathways regulating intestinal senescence caused by increased mtDNA mutations NAD+ repletion rescues the Foxl1 downregulation and Notch1 upregulation in Mut/Mut*** mice, suggesting that mtDNA mutation burden can regulate the function or number of niche cells through NAD+ depletion. In addition, NAD+ depletion caused by increased mtDNA mutation burden induces the decline of LGR5-positive intestinal cells via impairment of the Wnt/β-catenin pathway. 7. Conclusion NAD+ repletion is significant for the regulation of intestinal homeostasis, playing a critical role in rescuing the intestinal senescence phenotype caused by accumulated mtDNA mutations. Reference Yang, Liang et al. “NAD+ dependent UPRmt activation underlies intestinal aging caused by mitochondrial DNA mutations.” Nature communications vol. 15,1 546. 16 Jan. 2024, doi:10.1038/s41467-024-44808-z About BONTAC BONTAC is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. BONTAC has over 160 domestic and foreign patents, leading the industry of coenzyme and natural products. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and NMN. High quality and stable supply of products can be ensured here. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.
1. Introduction On January 9, 2024, the expert team of selection organizing committee from Deloitte visited BONTAC, and presented the trophy of “China Life Sciences & Healthcare Rising Star” to BONTAC on site. By virtue of its unique and innovative technology in the field of coenzymes, professional R&D team with rich experience, and excellent performance in the industry of biosynthesis, BONTAC has stood out from the crowd and won the award of "Deloitte China Life Sciences & Healthcare Rising Star". 2. 2023 Deloitte China Life Sciences & Healthcare Rising Star Since the launch of “Deloitte China Life Sciences & Healthcare Rising Star” campaign by the end of June 2023, extensive attention has been attracted by the Chinese medicine and health industry. Following verification by site visit of the enterprises, 50 enterprises with prominent comprehensive strength are finally determined to be eligible, which are subjected to rigorous review of multiple dimensions such as financial asset valuation, founding team, technical innovation, market prospect, industrial rank, etc. The awarded enterprises in this selection campaign encompass the advanced enterprise in the niche areas of life sciences and healthcare, who comprehensively display their multiple innovation achievements in the field of life sciences and healthcare. The “Deloitte China Life Sciences & Healthcare Rising Star” selection campaign is a key subproject of Deloitt on the selection project of high-tech and fast-growing enterprises, aiming to recognize and award the outstanding enterprises who take the lead in their niche areas of life sciences and healthcare and have great growth potential. 3. The candidate enterprises must meet the the following criteria: * Business headquartered within China Mainland, Hong Kong or Macao. * Own leading technology and viable business models. * Have extensive growth potential with a leading position in their niche segments. 4. Current situation on Chinese medicine and health industry The technical innovation and product quality in Chinese medicine and health industry have continuously improved, which is driven by healthcare reform policies, emerging technologies and capital markets. In China, independent innovation has penetrated into all tracks of the major health industry, which greatly promotes the research and development of domestically produced innovative medicines and medical technologies. Substantial promising innovative enterprises has emerged and gradually gained recognition in the global market, ranking among the first echelon of global technological innovation. 5. About BONTAC BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BONTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. BONTAC adheres to independent innovation, with more than 160 invention patents. In the future, BONTAC will adhere to the innovation-driven concept, continue to increase investment in research and development, dig into the field of synthetic biology, and commit to developing more high-quality raw material products. At the same time, BONTAC will actively expand the international market, and work with global partners to promote the prosperous development of synthetic biology industry. In this era full of challenges and opportunities, BONTAC is confident to make greater contributions to the cause of human health.