NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
Improved energy levels
Not only does NADH act as an important coenzyme in aerobic respiration, the [H] of NADH also carries a large amount of energy. Studies have demonstrated that extracellular use of NADH promotes increased intracellular ATP levels, suggesting that NADH penetrates cell membranes and elevates intracellular energy levels. On a macro level, exogenous supplementation of NADH helps to restore energy and enhance appetite. The increase in energy levels in the brain also helps to improve mental performance and sleep quality. NADH has been used overseas to improve chronic fatigue syndrome, increase exercise endurance, jet lag and other areas.
Cellular protection
NADH is a strong antioxidant that naturally occurs in cells and reacts with free radicals to inhibit lipid peroxidation, protecting mitochondrial membranes and mitochondrial function. It has been found that NADH can reduce oxidative stress in cells caused by various factors such as radiation, drugs, toxic substances, strenuous exercise and ischemia, thus protecting vascular endothelial cells, hepatocytes, cardiomyocytes, fibroblasts and neurons. Therefore, injectable or oral NADH is used clinically to improve cardiovascular and cerebrovascular diseases, and as an adjunct to cancer radiotherapy. Topical NADH has been shown to be effective in the treatment of rosacea and contact dermatitis.
Promotion of neurotransmitter production
Studies have shown that NADH significantly promotes the production of the neurotransmitter dopamine, a chemical signal that is essential for short-term memory, involuntary movements, muscle tone and spontaneous physical responses. It also mediates the release of growth hormone and determines muscle movement. Without sufficient dopamine, muscles become stiff. Parkinson's disease, for example, is caused in part by a disruption of dopamine synthesis in brain cells. Preliminary clinical data suggest that NADH can help improve the symptoms of Parkinson's disease [9]. NADH also promotes the biosynthesis of norepinephrine and serotonin, showing good potential for use in the relief of depression and Alzheimer's disease.
The main methods of NADH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme become the mainstream method owing to the advantages of pollution free, high level of purity and stability.
1、“Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、Exclusive“Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NADH powder
3、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMN powder
4、Provide one-stop product solution customization service
NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.
The action of supplemental NADH is unclear. Oral NADH supplementation has been used to combat simple fatigue as well as such mysterious and energy-sapping disorders as chronic fatigue syndrome and fibromyalgia. Researchers are also studying the value of NADH supplements for improving mental function in people with Alzheimer's disease, and minimizing physical disability and relieving depression in people with Parkinson's disease. Some healthy individuals also take NADH supplements orally to improve concentration and memory capacity, as well as to increase athletic endurance. However, to date there have been no published studies to indicate that using NADH is in any way effective or safe for these purposes
First, inspect the factory. After some screening, NADH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NADH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NADH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction NADH (reduced form of NAD+) serves as a carrier of biological hydrogen and an electron donor, which participates in diverse physiological processes such as protein synthesis, DNA repair, insulin synthesis and secretion, immune response and cell division, playing a critical role in promoting health span and mitigating various disease states. Major enzymatic reactions in substrate metabolism that are dependent upon NAD+/NADH ratio The equilibrium of the NAD+/NADH ratio is vital for maintaining cellular reduction–oxidation (redox) homeostasis and modulating energy metabolism. Several enzymatic reactions in substrate metabolism are carried out in a NAD+/NADH ratio-dependent way. For instance, ketones suppress the increased mitochondrial production of ROS associated with excitotoxic injury by enhancing NADH oxidation (i.e. elevated NAD+/NADH ratio) in the electron transport chain, directly affecting NADH level . NADH in Krebs cycle and glycolysis NADH is produced in glycolysis and the Krebs cycle (also known as citric acid cycle or tricarboxylic acid cycle), which can transfer energy to supply ATP synthesis through the process of oxidative phosphorylation in the inner membrane of the mitochondria. Krebs cycle supplies NADH as an electron carrier to the electron transport chain in mitochondria, while glycolysis-produced NADH can be used by L-lactate dehydrogenase (LDH) or transported to the mitochondria for redox homeostasis. The effects of NADH on the mitochondria are accomplished by specialized shuttle systems (e.g., malate-aspartate or glycerol-3-phosphate). The possible strategies to modulate NADH level The main NAD/NADH biosynthetic pathways include de novo synthesis from tryptophan (TRP), synthesis from either form of vitamin B3, nicotinamide (NAM) or nicotinic acid (NA), or conversion of nicotinamide riboside (NR). Correspondingly, NADH level can be regulated by replenishing NADH precursors (eg. NR and NMN), applying NADH dehydrogenase inhibitors, having diets rich in certain nutrients (eg. vitamin B3), administrating mitochondrial targeting agents and supplementing exogenous NADH. Conclusion NADH may be a versatile therapeutic candidate by leverage of its ability to affect redox homeostasis, mitochondrial functions, and enzymatic reactions. Reference Schiuma G, Lara D, Clement J, Narducci M, Rizzo R. NADH: the redox sensor in aging-related disorders. Antioxid Redox Signal. Published online February 17, 2024. doi:10.1089/ars.2023.0375 BONTAC NADH BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories and over 170 global patents including 8 NADH patents. The purity of BONTAC NADH can reach over 98%. BONTAC NADH has been widely applied in anti-aging health products, diagnostic reagent raw materials, HCY Homocysteine Test Kit, Biomedical R&D, and functional food and beverage. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Myocardial ischemia-reperfusion (I/R) injury has emerged as an urgent clinical issue that may offset the benefits of reperfusion therapy and even worsen the prognosis of acute myocardial infarction, a severe cardiovascular disease with significant mortality and morbidity. Nicotinamide riboside (NR), a nicotinamide adenine dinucleotide (NAD+) intermediate, has been unveiled to hold great therapeutic potential in myocardial I/R injury. About myocardial I/R injury Myocardial I/R injury refers to the damaging effects on cardiomyocytes or heart tissues following ischemia and the regaining of blood perfusion or oxygen supply, with characteristics of cell swelling, contracture of myofibrils, and disruption of the sarcolemma in myocardium. The mechanisms of myocardial I/R injury are extremely complex, chiefly involving cellular and molecular biological events such as cellular oxidative stress, intracellular calcium overload, mitochondrial dysfunction, inflammatory response, apoptosis and autophagy. Strikingly, autophagy and oxidative stress have been perceived as vital factors in the treatment of myocardial I/R injury. The alleviating effects of NR on myocardial I/R injury in mice NR can improve the cardiac function of mice with myocardial I/R injury, and reduce the generation of myocardial injury- and oxidative stress-associated biomarkers. Herein, the optimal concentration of NR for protection against H/R injury is 10 mM. In vivo, NR diminishes the area of myocardial ischemic infarction, alleviates pathological myocardial changes, decreases inflammatory cell infiltration, and attenuates the levels of mitochondrial reactive oxygen species (ROS) as well as creatine kinase myocardial band (CK-MB). In vitro, NR pretreatment lessens the levels of lactate dehydrogenase, CK-MB, malondialdehyde, superoxide dismutase and ROS, as well as the mortality of H9c2 cells after the induction of hypoxia/reoxygenation (H/R) injury. The significance of Sirt 1 pathway in the regulation of autophagy by NR Excessive autophagy can exacerbate I/R injury, giving rise to an increase in cardiomyocyte apoptosis and greater cardiac dysfunction. Noteworthily, NR can lead to the activation of Sirt 1, an NAD+-dependent enzyme, to protect the H9c2 cells against excessive autophagy, thereby alleviating the myocardial I/R injury. Post NR pre-treatment, the levels of autophagy-related proteins (Beclin 1, P62 and LC3II/LC3I) are apparently downregulated in the H9c2 cells challenged with H/R. Remarkably, the supplement of Sirt 1 inhibitor EX527 overtly attenuates NR-induced reduction in the expression levels of autophagy-related proteins under H/R conditions, hinting the significance of Sirt 1 in the regulation of autophagy by NR. Conclusion The myocardial I/R injury can be ameliorated by regulating the autophagy and oxidative stress with NR. On the one hand, NR can directly participate in oxidative reduction to lessen the level of oxidative stress in cardiomyocytes. On the other hand, NR can protect cardiomyocytes against excessive autophagy, which is possibly accomplished by increasing the NAD+ content in the body via the Sirt 1 pathway. Reference Yuan C, Yang H, Lan W, et al. Nicotinamide ribose ameliorates myocardial ischemia/reperfusion injury by regulating autophagy and regulating oxidative stress. Exp Ther Med. 2024;27(5):187. doi:10.3892/etm.2024.12475 BONTAC NR BONTAC is one of the few suppliers in China that can launch mass production of raw materials for NR, with self-owned factory and professional R&D team. Up till now, there are 173 BONTAC patents. BONTAC provides one-stop service for customized products. Both malate and chloride salt forms of NR are available. By dirt of unique Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method, the product content and conversion rate can be maintained in a higher level. The purity of BONTAC NR can reach above 97%. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Cardiovascular diseases (CVD) poses huge economic burden and great threat to the life of patients, even surpassing Alzheimer's disease and diabetes. 17.9 million people in the world die from CVD, with indirect treatment costs of $237 billion per year, which are projected to increase to $368 billion by 2035. It has been reported that the deficiency or imbalance of oxidized nicotinamide adenine dinucleotide phosphate (NADP+)/reduced nicotinamide adenine dinucleotide phosphate (NADPH) redox couple has been linked to a variety of pathological conditions including CVD. NADP(H) redox couple as cofactor/electron carrier in cardiommyocytes NADPH is an essential cofactor of glutathione reductase (GR) and thioredoxin reductase (TRs) in cardiommyocytes, with a crucial role in maintaining cellular redox homeostasis and energy metabolism. GR catalyzes the recycling of Glutathion (GSH) from oxidized glutathione (GSSG), and TRs reduces oxidized Trx-S2 into Trx-(SH)2. Simultaneously, both enzymes require NADPH as an electron donor and oxidize it to NADP+. Once O2•− is formed, for example, from NOXs in the cytosol and from mitochondrial electron transport chain (ETC), cytosolic CuZnSOD and mitochondrial MnSOD will reduce it to H2O2. GSH can be used by glutathione peroxidase (GPx) to reduce H2O2 further to water. Trx-(SH)2 provides reducing equivalents for Prx in the removal of H2O2. The connection of NADP(H) with cardiovascular pathologies NADP(H) plays a dual role in cardiovascular pathologies. On the one hand, the reduced NADPH can result in significant antioxidant deficiencies and intracellular accumulation of free radicals, which triggers lipid peroxidation, inflammation, and vascular dysfunction, ultimately exacerbating the course of atherosclerosisoxidase. On the other hand, high NADPH level can give rise to myocardial injury by inducing reductive stress and enhancing reactive oxygen species (ROS) production. Conclusion Changes in cellular NADP(H) content affect the intermediary metabolism of cardiac function, especially in diseased myocardium. Maintaining the balance between NADP+ and NADPH in cardiommyocytes is critically important for the treatment of CVD. Either deficiency or excess NADP(H) levels can lead to imbalances in cellular redox state and metabolic homeostasis, resulting in energy stress, redox stress, and ultimately disease state. NADP(H) has an important therapeutic value in CVD. Reference Sun Y, Wu D, Hu Q. NADP+/NADPH in Metabolism and its Relation to Cardiovascular Pathologies. Curr Med Chem. Published online February 16, 2024. doi:10.2174/0109298673275187231121054541 BONTAC NADP(H) BONTAC has dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NADP(H). Bonzyme whole-enzymatic method is adopted, which is environmental-friendly, with no harmful solvent residues. The purity of NADP and NADPH can reach up to 95% and 98%, respectively, which is benefited from the exclusive Bonpure seven-step purification technology. BONTAC has self-owned factories and has obtained a number of international certifications, where high quality and stable supply of products can be ensured. BONTAC has four domestic and foreign NADPH patents, leading the industry. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.