NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
1、“Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability of production of NMN powder
3、Industrial leading technology: 15 domestic and international NMN patents
4、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMN powder
5、Multiple in vivo studies show that Bontac NMN powder is safe and effective
6、Provide one-stop product solution customization service
7、NMN raw material supplier of famous David Sinclair team of Harvard University.
NMN powder in general is typically produced via chemical or enzymatic synthesis, or fermentation biosynthesis. There are pros and cons to all three methods.
Chemical synthesis is expensive and labor intensive, and all raw ingredients used are categorized as “unnatural,” i.e., not from biological systems. There are, however, some advantages from the manufacturer’s perspective. The yield is well suited to mass NMN powder production, and all of those unnatural raw ingredients can be carefully controlled. But there are a number of drawbacks as well. Some of the solvents used in the manufacturing process are seriously bad from an environmental standpoint, and impurities and by-products can be challenging to remove from the finished product – that’s seriously bad for the consumer.
Enzymatic production of NMN powder, on the other hand, is considered a “green preparation method.” Like the chemical route, it’s pricey, but it offers a higher yield and impressively high purity. The finished NMN ticks all the boxes – stable, easily absorbed, lightweight, low density, and a low molecular structure.
Fermentation has also been explored as a method of producing NMN, but yield, though high quality, is pretty abysmal, so many supplement companies quite sensibly look to other, more efficacious processes.
NMN was only considered as a source of cellular energy and an intermediate in NAD+ biosynthesis, currently, the attention of the scientific community has been paid on anti-aging activity and a variety of health benefits and pharmacological activities of NMN which are related to the restoring of NAD+. Thus, NMN has therapeutic effects towards a range of diseases, including age-induced type 2 diabetes, obesity, cerebral and cardiac ischemia, heart failure and cardiomyopathies, Alzheimer’s disease and other neurodegenerative disorders, corneal injury, macular degeneration and retinal degeneration, acute kidney injury and alcoholic liver disease.
Aging, as a natural process is identified by downregulation of energy production in mitochondria of various organs such as brain, adipose tissue, skin, liver, skeletal muscle and pancreas due to the depletion of NAD+ . NAD+ levels in the body decrease as a consequence of increasing NAD+ consuming enzymes when aging There are three different biosynthesis pathways to produce NAD+ in mammalian cells including de novo synthesis from tryptophan, salt and Preiss-Handler pathways. Among these three pathways, NMN is an interproduct by is involved in NAD+ biosynthesis through salt and Preiss-Handler pathways. The salvage pathway is the most efficient and the main route for the NAD+ biosynthesis, in which nicotinamide and 5-phosphoribosyl-1-pyrophosphate are converted to NMN with the enzyme of NAMPT followed by conjugation to ATP and conversion to NAD by NMNAT. Furthermore, NAD+ consuming enzymes are responsible for degradation of NAD+ and consequence nt formation of nicotinamide as a by-product.
The safety of NMN powder cannot be assessed since required clinical and toxicological studies have not been completed yet to establish the recommended safe levels for long term administration. Nevertheless, their safety and efficacy are uncertain and unreliable since most of them have not been back by Rigorous scientific preclinical and clinical testing. This issue has been arisen as manufacturers are hesitant to pay for research and clinical trials due to potential lower profit margin, and there is no authorizing agency to regulate NMN products because it is often product sold as functional food than heavily regulated therapeutic drug. Therefore, more strict approval process has been demanded by consumer advocacy groups requesting regulatory agencies to set standard and restrictions for marketing anti-aging health products, considering safety, health and wellbeing of N red besumers. a panacea for the elderly, because boosting NAD levels when not required may yield some detrimental effects. Therefore, the dose and frequency of NMN supplementation should be carefully prescribed depending on the type of age-related deficiency and all other confronting health conditions of the people. Other NAD precursors over have been studied to diverse age-related deficiencies and they are used for particular deficiencies, only after they are proven for effectiveness and safe to use. Therefore, the same principle should be applied to NMN as well
First, inspect the factory. After some screening, NMN companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMN powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMN powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound ca n be preliminarily determined.
Introduction NADH (reduced form of NAD+) serves as a carrier of biological hydrogen and an electron donor, which participates in diverse physiological processes such as protein synthesis, DNA repair, insulin synthesis and secretion, immune response and cell division, playing a critical role in promoting health span and mitigating various disease states. Major enzymatic reactions in substrate metabolism that are dependent upon NAD+/NADH ratio The equilibrium of the NAD+/NADH ratio is vital for maintaining cellular reduction–oxidation (redox) homeostasis and modulating energy metabolism. Several enzymatic reactions in substrate metabolism are carried out in a NAD+/NADH ratio-dependent way. For instance, ketones suppress the increased mitochondrial production of ROS associated with excitotoxic injury by enhancing NADH oxidation (i.e. elevated NAD+/NADH ratio) in the electron transport chain, directly affecting NADH level . NADH in Krebs cycle and glycolysis NADH is produced in glycolysis and the Krebs cycle (also known as citric acid cycle or tricarboxylic acid cycle), which can transfer energy to supply ATP synthesis through the process of oxidative phosphorylation in the inner membrane of the mitochondria. Krebs cycle supplies NADH as an electron carrier to the electron transport chain in mitochondria, while glycolysis-produced NADH can be used by L-lactate dehydrogenase (LDH) or transported to the mitochondria for redox homeostasis. The effects of NADH on the mitochondria are accomplished by specialized shuttle systems (e.g., malate-aspartate or glycerol-3-phosphate). The possible strategies to modulate NADH level The main NAD/NADH biosynthetic pathways include de novo synthesis from tryptophan (TRP), synthesis from either form of vitamin B3, nicotinamide (NAM) or nicotinic acid (NA), or conversion of nicotinamide riboside (NR). Correspondingly, NADH level can be regulated by replenishing NADH precursors (eg. NR and NMN), applying NADH dehydrogenase inhibitors, having diets rich in certain nutrients (eg. vitamin B3), administrating mitochondrial targeting agents and supplementing exogenous NADH. Conclusion NADH may be a versatile therapeutic candidate by leverage of its ability to affect redox homeostasis, mitochondrial functions, and enzymatic reactions. Reference Schiuma G, Lara D, Clement J, Narducci M, Rizzo R. NADH: the redox sensor in aging-related disorders. Antioxid Redox Signal. Published online February 17, 2024. doi:10.1089/ars.2023.0375 BONTAC NADH BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories and over 170 global patents including 8 NADH patents. The purity of BONTAC NADH can reach over 98%. BONTAC NADH has been widely applied in anti-aging health products, diagnostic reagent raw materials, HCY Homocysteine Test Kit, Biomedical R&D, and functional food and beverage. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Oxidized form of nicotinamide adenine dinucleotide (NAD+) and its precursor nicotinamide mononucleotide (NMN) have been uncovered to restore DNA repair and prevent cancer progression via the deleted in breast cancer 1 (DBC1). This research is committed to deciphering the detailed molecular mechanisms. About DBC1 DBC1 is a nuclear protein initially cloned from a human chromosome 8p21 region, which can modulate diversified targets by protein-protein interaction, contributing to various cellular processes such as apoptosis, DNA repair, senescence, transcription, metabolism, circadian cycle, epigenetic regulation, cell proliferation, and tumorigenesis. The affinity and molecular binding mechanisms between NAD+/NMN and DBC1354–396 Under the help of nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments, it is verified that both NAD+ and NMN have a binding relationship with the NHD domain of DBC1. Specifically, NAD+ interacts with DBC1354-396 through hydrogen bonds, with a binding affinity (8.99 μM) nearly twice that of NMN (17.0 μM) and the key binding sites are primarily residues E363 and D372. The vital roles of E363 and D372 mutagenesis in ligand-protein interaction The N-terminal loop of DBC1354-396 encloses the small ligand within a local space, anchoring NAD+ and NMN to the protein through key amino acid residues E363 and D372 via hydrogen bonding. Conclusion Both NAD+ and its precursor NMN can bind to DBC1's NHD domain (DBC1354–396) at key sites E363 and D372, providing novel clues for the development of targeted therapies and drug research on DBC1-associated disease including tumors. Reference Ou L, Zhao X, Wu IJ, et al. Molecular mechanism of NAD+ and NMN binding to the Nudix homology domains of DBC1. Int J Biol Macromol. Published online February 12, 2024. doi:10.1016/j.ijbiomac.2024.130131 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Nicotinamide mononucleotide (NMN) supplementation has been suggested to hamper the inflammatory responses via restoring NAD+ level and downregulating the expression of Cyclooxygenase-2 (COX-2). Strikingly, both Aryl hydrocarbon receptor (AhR) and Indoleamine 2,3-Dioxygenase 1 (IDO1), two key enzymes for kynurenine production, can mediate the anti-inflammatory function of NMN in RAW 264.7 macrophages. 2. The alleviated inflammatory response in the presence of NMN supplementation For deciphering the impact of NMN in vivo, mice are subjected to daily intraperitoneal (i.p.) injection of NMN (500 mg/kg) for consecutive 6 days, followed by i.p. injection of lipopolysaccharides (LPS) (5 mg/kg) or alum (700 μg) on day 7. It is discovered that NMN supplementation suppresses LPS- or alum-induced inflammation in mice, as manifested by the downregulation of proinflammatory cytokines (IL-6 and IL-1β) and proinflammatory enzyme (COX-2). 3. The necessity of AhR for NMN-mediated inhibition of inflammatory response in macrophages AhR, a ligand-activated transcription factor, can mediate the anti-inflammatory function of NMN upon LPS treatment in RAW264.7 cells. Specifically, NMN reduces the expression of COX-2 in cells in bearing AHR. On the contrary. AhR inhibitor (CH223191) deprives the downregulation of IL-6, IL-1β and COX-2 caused by NMN treatment. Likewise, NMN treatment fails to reduce the expression levels of IL-6, IL-1β, and COX-2 in AhR knockout cells. 4. The importance of IDO1/kynurenine/AhR axis in the anti-inflammation function of NMN IDO1 is the rate-limiting enzyme in tryptophan catabolism to produce kynurenine, a metabolic intermediate in NAD+ de novo synthesis pathway. Kynurenine can promote the translocation of AhR from the cytoplasm to nucleus, thereby exerting an anti-inflammatory effect. NMN inhibits LPS-induced inflammation in a IDO1-kynurenine dependent manner in macrophages. 5. Conclusion NMN supplementation mitigates COX-2-associated inflammatory responses by activating lDO-kynurenine-AhR pathway, providing new insights into NAD* regulation in macrophage activation. Reference Liu J, Hou W, Zong Z, et al. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med. Published online February 8, 2024. doi:10.1016/j.freeradbiomed.2024.01.046 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.