NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme become the mainstream method owing to the advantages of pollution free, high level of purity and stability.
when applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective, as at 500 µM concentration, it achieved “an almost 10- fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
1、“Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2、Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3、Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder
4、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5、Provide one-stop product solution customization service
NMNH also proved more effective than NMN in raising NAD+ levels in a variety of tissues when administered at the same concentration, confirming the results observed in cell lines. The data presented in this study also corroborate the evidence that NAD+ boosters protect against different models of acute kidney injury, and place NMNH as a great alternative intervention to other NAD+ precursors to reduce tubular damage and accelerate recovery.
To overcome the limitations of the current repertoire of NAD+ enhancers, other molecules with a more pronounced effect on the NAD+ intracellular pool are desired. This has stimulated us to investigate the use of the reduced form of nicotinamide mononucleotide (NMNH) as an NAD+ enhancer. There is very scarce information about the role of this molecule in cells. In fact, only one enzymatic activity has been described to produce NMNH. This is the NADH diphosphatase activity of the human peroxisomal Nudix hydrolase hNUDT1232 and the murine mitochondrial Nudt13.33 It has been postulated that, in cells, NMNH would be converted to NADH via nicotinamide mononucleotide adenylyl transferases (NMNATs).34 However, both NMNH production by Nudix diphosphatases and its use by NMNATs for NADH synthesis have only been described in vitro using isolated proteins, and how NMNH participates in cellular NAD+ metabolism remains unknown.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction Solute carrier family 25 member 51 (SLC25A51) is perceived as a mammalian transporter, which is capable of importing oxidized nicotinamide adenine dinucleotide (NAD+) into mitochondrial matrix. Remarkably, upregulation of SLC25A51 has correlation with poorer outcomes in patients with acute myeloid leukemia (AML), a clinically aggressive haematological disease with a mortality rate of over 70% within the first 5 years following an initial diagnosis. The association between NAD+/NADH ratio and SLC25A51 in AML cells Both NAD+ (oxidative form) and NADH (reduced form) are essential coenzymes for cellular energy metabolism, and the ratio of NAD+/NADH reflects the metabolic activity and health state, which has a direct impact on cellular rhythms, senescence, carcinogenesis and death. Importing mitochondrial NAD+ by SLC25A51 could be a critical aspect supporting mitochondrial metabolism in AML tumorigenesis. Concretely, the decreased mitochondrial NAD+/NADH ratio and specific loss of reduced ubiquinol are observed post the depletion of SLC25A51 in AML cells U937. SLC25A51 as an NAD+/NADH redox decoupler in AML SLC25A51 functions as an NAD+/NADH redox decoupler in AML tumorigenesis to sustain an oxidative TCA cycle and promote glutaminolysis. Depletion of SLC25A51 results in increased usage of non-glutamine carbon sources to support the TCA cycle, as determined by increased proportions of unlabeled TCA intermediates. SLC25A51 is required for robust glutaminolysis. In the context of SLC25A51 depletion, AML cells are forced to rely more on glutamine for aspartate synthesis. Alleviation of AML by SLC25A51 depletion and 5-azacytidine Loss of SLC25A51 leads to a subcellular redistribution of NAD+ in AML cells to limit proliferation. The combination of SLC25A51 depletion and 5-azacytidine is much effective in repressing the viability of AML cells and prolonging the survival time of mice. Conclusion SLC25A51 can maintain mitochondrial oxidative phosphorylation and boost the proliferation of AML cells by regulating NAD+/NADH ratio in mitochondria, with promising efficacy in treating AML, especially in combination with 5-azacytidine. BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1.Introduction Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), also known as reduced coenzyme II, is a critical cofactor in cellular antioxidant systems and lipid synthesis, which links insulin resistance and ferroptosis of pancreatic β cells in the context of metabolic disorders such as diabetes mellitus, playing a central role in maintaining metabolic homeostasis. 2. Biological role of NADPH NADPH functions as a coenzyme essential to cellular metabolism, playing pivotal roles in various critical biological processes, such as ROS scavenging, ROS production, fatty acid synthesis and cholesterol synthesis. 3. Biosynthetic pathway of NADPH Cellular production of NADPH is facilitated through several pathways, including the pentose phosphate pathway, the citric acid cycle, and fatty acid metabolism. The dynamic equilibrium between NADPH synthesis and consumption is essential for preserving cellular redox balance and enabling a host of biosynthetic reactions. 4. The role of NADPH in insulin secretion from pancreatic β-Cells Both redox reaction and metabolic signaling can modulate insulin secretion from pancreatic β-cells, where NADPH plays a central role. It can not only serves as a metabolic coupling factor, but also acts as a custodian of β-cell integrity, delicately managing the interplay between metabolic inputs and insulin output. 5. The interaction between insulin resistance and NADPH A substantial body of evidence reveals that NADPH is critical for the regulation of oxidative stress and inflammatory responses, the main contributors to the pathogenesis of insulin resistance. Specifically, NADPH is implicated in ROS production via NOX and is also utilized in the synthesis of new fatty acids, which contributes to the development of insulin resistance, particularly in the context of obesity-induced chronic inflammation. 6. The impact of NADPH upon the ferroptosis in the context of diabetes In pancreatic β cells, the elevated blood sugar and pro-inflammatory cytokines can trigger oxidative stress and iron accumulation to promote lipid peroxidation, thereby facilitating the ferroptosis. In return, the ferroptosis can reduce insulin secretion and beta cell mass, which is contributive to the progression of diabetes. In general, NADPH plays a dual role in ferroptosis. On the one hand, it can promote ROS generation via NOX. On the other hand, it can support antioxidant defense through glutathione regeneration. In the context of diabetes, NADPH may predominantly fuel processes leading to ferroptosis, mainly due to the enhanced activity and affinity of NOX, which however requires further research for verification. 7. Conclusion NADPH has a critical role in the complex landscape of metabolic disorders, particularly insulin resistance and ferroptosis. Regulating NADPH-related pathways may open up new opportunities for the treatment of metabolic disorders. Reference Moon, Dong-Oh. “NADPH Dynamics: Linking Insulin Resistance and β-Cells Ferroptosis in Diabetes Mellitus.” International journal of molecular sciences vol. 25,1 342. 26 Dec. 2023, doi:10.3390/ijms25010342 Production advantages and features of BONTAC NADPH BONTAC has rich R&D experience and advanced technology in the biosynthesis of NADPH. Bonzyme whole-enzymatic method is adopted, which is environmental-friendly, with no harmful solvent residues. The purity of NADPH can reach up to 95%, which is benefited from the exclusive Bonpure seven-step purification technology. BONTAC has self-owned factories and has obtained a number of international certifications, where high quality and stable supply of products can be ensured. BONTAC has four domestic and foreign NADPH patents, leading the industry. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction On Feb 25-29, 2024, BONTAC was invited to 2024 Boao Healthy Food Science Conference & Exposition (FHE 2024) and made a discussion with the industry elites on the innovation of science and technology as well as the trend towards industry development in the health food area. Conference profile There are 15 academicians, 300 report experts, and over 2000 delegates from around the world gathering around the conference. More than 40 professional forums are planned in FHE 2024, attracting the active participation of domestic and foreign industry leaders such as Danone, Nestle and Pepsi. BONTAC star products in FHE 2024 By dirt of its innovative technology and strong R&D strength in the field of green biosynthesis, BONTAC stands out from the crowd. To date, there are over 170 global patents by BONTAC. BONTAC star products, including NMN, NADH and ginsenoside Rh2/Rg3, are present in FHE 2024, which are highly recognized by many brand owners. Many attendees are attracted to learn more and negotiate with BONTAC for further cooperation. Notably, Professor Chen Junshi from Chinese Academy of Engineering visited the booth of BONTAC, gave guidance to the team of BONTAC and highly praised the innovative achievements in the field of biosynthesis. Facilitating the development of high-quality health food via innovation of science and technology From the traditional healthcare with herbs to modern precision nutrition, health has always been the focus of people. With the progress of science and technology, the development of new functional nutrients has gradually relied on the support of technical innovation. In various niche areas of health, NMN has emerged as an essential force in health industry by leverage of its unique science base and broad application prospect. Mounting scientific research and clinical practice have attested the obvious efficacy of NMN in promoting the immunity, improving the cardiovascular health, and alleviating the fatigue. Conclusion FHE 2024 is the first domestic platform for the communication of scientific evidence on health beneficial food. In the future, BONTAC will continue to provide comprehensive solutions for anti-aging series products including coenzyme and natural extracts, and facilitate the development of high-quality food via innovation of science and technology. About BONTAC BONTAC has been dedicated to the green biosynthesis for 12 years, with the intention of creating a better life for human beings. Up till now, there are 173 patents by BONTAC. As the pioneer of NMN industry, BONTAC is the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”.