NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
when applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective, as at 500 µM concentration, it achieved “an almost 10- fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
1、“Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2、Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3、Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder
4、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5、Provide one-stop product solution customization service
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme become the mainstream method owing to the advantages of pollution free, high level of purity and stability.
NMNH also proved more effective than NMN in raising NAD+ levels in a variety of tissues when administered at the same concentration, confirming the results observed in cell lines. The data presented in this study also corroborate the evidence that NAD+ boosters protect against different models of acute kidney injury, and place NMNH as a great alternative intervention to other NAD+ precursors to reduce tubular damage and accelerate recovery.
To overcome the limitations of the current repertoire of NAD+ enhancers, other molecules with a more pronounced effect on the NAD+ intracellular pool are desired. This has stimulated us to investigate the use of the reduced form of nicotinamide mononucleotide (NMNH) as an NAD+ enhancer. There is very scarce information about the role of this molecule in cells. In fact, only one enzymatic activity has been described to produce NMNH. This is the NADH diphosphatase activity of the human peroxisomal Nudix hydrolase hNUDT1232 and the murine mitochondrial Nudt13.33 It has been postulated that, in cells, NMNH would be converted to NADH via nicotinamide mononucleotide adenylyl transferases (NMNATs).34 However, both NMNH production by Nudix diphosphatases and its use by NMNATs for NADH synthesis have only been described in vitro using isolated proteins, and how NMNH participates in cellular NAD+ metabolism remains unknown.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
1. Introduction Disrupted nicotinamide adenine dinucleotide (NAD+) metabolism is increasingly deemed to be one of risk factor for amendable cardiovascular disorders. A substantial evidence has mirrored that restoring NAD+ stock and energy metabolism may be effective in alleviating the symptoms of patients with heart failure (HF), one of the typical cardiovascular disease after myocardial infarction (MI). 2. About HF HF has dominant clinical features of ventricular filling or ejection impairment, concomitant with abnormalities in cardiac structure/function. This disorder afflicts about 38 million patients across the world, and the number of HF patients is on the rise with the age, posing a great threat to the life of patients and bringing huge economic burden on the patient family and society. In terms of drug therapies of HF, the "golden triangle" of beta blockers, ACEI/ARB, and aldosterone receptor antagonists has long been the preferred option. Despite significant improvement on the survival of patients, the 5-year mortality rate remains at 50%. Hence, it is of great significance to seek novel way with high efficacy and safety. NAD supplements may be an effective choice for alleviating HF. 3. Research protocol For further verification of the efficacy of NAD+, MI-induced HF models are constructed in male Sprague-Dawley rats and beagles herein. Subsequently, the left anterior descending arteries of MI-induced HF animals are ligated for 1 week, followed by 4-week treatment with or without low/medium/high dose of NAD+ and the positive control drug LCZ696, an angiotensin receptor blocker-neprilysin inhibitor with an cardioprotective effect after MI. 4. The efficacy of NAD on rats and beagles with MI-induced HF NAD+ shows the equivalent efficacy as LCZ696 in the treatment of MI-induced HF, or even better than LCZ696 at the medium and high doses. In rat/beagle HF models, the heart mass index, heart function, and myocardial fibrosis in the infarct marginal zone are dose-dependently improved post administration of NAD or LCZ696, as manifested by decreased end-systolic volume, end-systolic dimension, creatine kinase and lactic dehydrogenase, as well as the increased ejection fractions, fractional shortening, cardiac output, and stroke volume. In addition, the downregulation of left ventricular blood pressure in the HF model animals is ameliorated post administration of NAD or LCZ696. 5. Conclusion In rat and beagle MI-induced HF models, NAD+ conspicuously alleviates myocardial hypertrophy and cardiac function, represses myocardial fibrosis, and reduces the myocardial infarction, laying a theoretical foundation for the clinical application of energy metabolism therapy with NAD+. Reference Pei Z, Yang C, Guo Y, Dong M, Wang F. The Role of NAD+ in Myocardial Ischemia-induced Heart Failure in Sprague-Dawley Rats and Beagles. Curr Pharm Biotechnol. Published online February 13, 2024. doi:10.2174/0113892010275059240103054554 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Nicotinamide adenine dinucleotide (NAD) has been unveiled to be essential for embryonic development. Patients with genetic variants in the NAD+ de novo synthesis pathway often have congenital NAD deficiency disorder (CNDD), a multisystem condition inherited in an autosomal recessive manner. In the context of NAD+ deficiency, all organs and systems, not just vertebrae, heart, kidneys, and limbs, may be affected. 2. The association between NAD synthetase 1 (NADSYN1) and CNDD Individuals delivering biallelic NADSYN1 variants share similar clinical features to those with CNDD. Up till now, almost all of the identified CNDD cases can be attributed to biallelic loss-of-function variants in any of 3 nonredundant genes of the NAD de novo synthesis pathway, including kynureninase (KYNU), 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), or NADSYN1. Among individuals with CNDD identified to date, those with biallelic pathogenic NADSYN1 variants are the most diverse in phenotype. 3. The impact of NADSYN1 variants upon enzymatic activity and phenotype Specifically, NADSYN1 can catalyse the amidation of nicotinic acid adenine dinucleotide (NaAD) to NAD. Biallelic pathogenic variants in NADSYN1 cause a metabolic block in both the de novo pathway and the Preiss-Handler pathway, leading to NAD deficiency. Biallelic NADSYN1 loss-of-function variants impact the NAD metabolome of humans. Post-birth phenotypes involve feeding difficulties, developmental delay, short stature, etc. 4. Mouse embryogenesis disrupted by the loss of NADSYN1 In NADSYN1-/- mouse embryos, NAD-dependent malformations occur when maternal dietary NAD precursors are limited during gestation. The affected Nadsyn1-/- embryos most frequently present malformations of the kidneys, eyes, and lungs. 5. The preventative effect of amidated NAD precursor supplementation against CNDD NADSYN1-dependent embryo loss and malformation in mice are preventable by dietary supplementation of amidated NAD precursors (NMN and NAM) during pregnancy. Maternal diet–derived NAD precursors primarily determine the development of healthy embryos. 6. Conclusion NAD-boosting supplements are essential for individuals with biallelic loss-of-function variants in NADSYN1. Maternal NAD precursor supplementation, to some extent, can reduce the risk of developing CNDD. Reference Szot JO, Cuny H, Martin EM, et al. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder. J Clin Invest. 2024;134(4):e174824. Published 2024 Feb 15. doi:10.1172/JCI174824 About BONTAC BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Diabetic peripheral neuropathy (DPN) is one of the most frequent complications of diabetes, ans also a major cause of foot ulcers, disability, and eventual amputation. With the prolongation of the diabetes, about 50% of people with diabetes will eventually develop DPN. Notably, supplementing NAD+ precursors could alleviate DPN symptoms by increasing the NAD+ level and activating the sirtuin-1 (SIRT1) protein. 2. The reversal effect of NAD+ precursors on DPN In vitro, the Dorsal Root Ganglion neurons (DRGs) isolated from diabetic mice are exposed to the NAD+ precursor Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN). It is found that the NAD+ level, the SIRT1 protein, and the deacetylation activity are elevated, followed by the boosted neurite growth, the improved nerve function, and the reversal of IENFD loss. In vivo, supplement of NMN or NR also offsets the neuropathy in C57BL6 mice induced by streptozotocin (STZ) or high fat diet (HFD), as manifested by the improved sensory function, normalized nerve conduction velocities, and restored intraepidermal nerve fibers. 3. The increase of neurite length in a SIRT1-dependent manner post the addition of NMN/NR SIRT1, one of the most unique NAD+ consuming enzymes, can protect against DPN when activated, which may attribute to the improved mitochondrial function and energy homeostasis. Apart from these, SIRT1 activity in the nucleus can deacetylate the transcriptional and co-transcriptional factors that regulate glucose homeostasis and fat oxidation. The activation of SIRT1 is critical for axonal regeneration. NMN/NR treatment or transfection with SIRT1 overexpression vector can directly facilitate the neurite growth in cultured DRG neurons, which however is hindered by the SIRT1 inhibitor EX527, hinting the significance of SIRT1. 4. The association of SARM1 with NMNAT2 in axonal degeneration of DPN Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) controls the axonal degeneration and regeneration via a well-regulated system comprising NAD+ and NMN. NAD and NMNAT2 can boost vesicular glycolysis and axonal transport to maintain the axonal health. The mitochondrial localization of SARM1 complements the coordinated activity of NMNAT2 that promotes axonal survival. 5. Conclusion Supplementing NAD+ precursors may be a promising approach for the treatment of DPN. A SARM1 inhibitor coupled with either NR or NMN may be more effective than a single agent alone in preventing or treating DPN. Reference Chandrasekaran K, Najimi N, Sagi AR, et al. NAD+ Precursors Reverse Experimental Diabetic Neuropathy in Mice. Int J Mol Sci. 2024;25(2):1102. Published 2024 Jan 16. doi:10.3390/ijms25021102 BONTAC NMN and NR BONTAC has dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 160 global patents as well as strong R&D team consisting of Doctors and Masters. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. Both the precursors NMN and NR are available in BONTAC. The high purity and stability of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.