NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
1. "Bonzyme" Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder.
2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability.
3. Exclusive “Bonpure” seven-step purification technology, high purity (up to 99%) and stability of production of NMNH powder
4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder
5. Provide one-stop product solution customization service
The main methods of NMNH powder preparation include extraction, fermentation, fortification, biosynthesis and organic matter synthesis. Compared with other preparations, the whole enzyme becomes the mainstream method owing to the advantages of pollution free, high level of purity and
When applied to cultured cells, the NMNH is shown to be more efficient than NMN as it was able to “significantly increase NAD+ at a ten times lower concentration (5 µM) than that needed for NMN”. Moreover, NMNH shows to be more effective , as at 500 µM concentration, it achieved “an almost 10-fold increase in the NAD+ concentration, while NMN was only able to double NAD+ content in these cells, even at 1 mM concentration.”.
Interestingly, NMNH also appears to act quicker and has a longer-lasting effect compared to NMN. According to the authors, NMNH induces a “significant increase in NAD+ levels within 15 minutes”, and “NAD+ steadily increased for up to 6 hours and remained stable for 24 hours, while NMN reached its plateau after only 1 hour, most likely because the NMN recycling pathways to NAD+ had already become saturated.”.
NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.
Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.
First, inspect the factory. After some screening, NMNH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMNH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMNH cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMNH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.
Introduction Mar 4th is determined as the World Obesity Day. World Obesity Federation, UNICEF and WHO have hosted a global youth-led webinar to talk about obesity & youth. The obesity crisis has gradually attracted much attention. The latest report by the Lancet suggests that one billion people are bothered by obesity (2022), with 650 million adults, 340 million adolescents and 39 million children. Recently, etiological studies and interventions for obesity have been progressively focused on the central nervous system, with an attempt to curb the onset of obesity at its source. Notably, targeting NAD+ salvage pathway in hypothalamic astrocytes may be a potential approach to combat obesity. The association of hypothalamic astrocytes and obesity The hypothalamus functions as the appetite regulation center, which receives and integrates the neuroendocrine factors produced by the central nervous system and peripheral tissues to promote or suppress appetite, so as to affect body weight. Noteworthily, aypothalamic astrocytes can apparently decrease glucose clearance and increase plasma insulin levels, playing an essential role in modulating energy metabolism, which are expected to be a new target for obesity treatment. Alleviation of high-fat diet (HFD)-induced obesity by repressing astrocyte NAD+ salvage pathway Under conditions of excessive fat intake, the NAD+ salvage pathway is specifically activated in hypothalamic astrocytes, which restrains the energy expenditure (EE) and fat oxidation in adipose tissues by downregulating sympathetic nerve innervation, eventually resulting in the accumulation of adipose tissue fat and the development of obesity. CD38 as a downstream mediator of astrocyte inflammation induced by the NAD+ salvage pathway. CD38 functions downstream of the NAD+ salvage pathway in hypothalamic astrocytes burdened with excess fat. CD38 knockdown in arcuate nucleus astrocytes diminishes the weight gain, reduces fat mass, increases EE, and lowers RER during HFD consumption. Cd38 depletion in hypothalamic astrocytes may improve hypothalamic inflammation by increasing NAD+ level. Hypothalamic inflammation can not only lead to energy imbalances, but also exacerbate central insulin resistance and leptin resistance, which can lead to the accumulation of fat in peripheral tissues. The role of nicotinamide phosphoribosyltransferase (NAMPT)–NAD+–CD38 axis in obesity In mammals, the salvage pathway represents the primary means of maintaining cellular NAD+ level. A crucial step in the NAD+ salvage pathway is catalyzed by NAMPT. In response to fat overload, the activation of the astrocytic NAMPT-NAD+-CD38 axis induces pro-inflammatory responses in the hypothalamus, eliciting aberrantly activated basal Ca2+ signals and compromised Ca2+ responses to metabolic hormones such as insulin, leptin, and glucagon-like peptide 1, ultimately resulting in dysfunctional hypothalamic astrocytes and contribute to the development of obesity. Conclusion Mechanically, inhibition of hypothalamic astrocytic NAD+ salvage pathway, along with its downstream CD38, mitigates hypothalamic inflammation and attenuates the development of HFD-induced obesity in male mice. Reference Park, J.W., Park, S.E., Koh, W. et al (2024). Hypothalamic astrocyte NAD+ salvage pathway mediates the coupling of dietary fat overconsumption in a mouse model of obesity. Nat Commun 15, 2102. https://doi.org/10.1038/s41467-024-46009-0 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR). There are various types of NAD to be selected, encompassing NAD ER Grade (endoxin removal), NAD Grade I (IVD/dietary supplement/cosmetics raw powder), NAD Grade II (API/intermediates) and NAD Grade IV (if any higher requirement on the solubility), which can be provided in the form of lyophilized powder or crystalline powder. The purity of BONTAC NAD can reach above 98%. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. BONTAC holds no responsibility for any claims, damages, losses, expenses or costs resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Nicotinamide mononucleotide (NMN) supplementation has been suggested to hamper the inflammatory responses via restoring NAD+ level and downregulating the expression of Cyclooxygenase-2 (COX-2). Strikingly, both Aryl hydrocarbon receptor (AhR) and Indoleamine 2,3-Dioxygenase 1 (IDO1), two key enzymes for kynurenine production, can mediate the anti-inflammatory function of NMN in RAW 264.7 macrophages. 2. The alleviated inflammatory response in the presence of NMN supplementation For deciphering the impact of NMN in vivo, mice are subjected to daily intraperitoneal (i.p.) injection of NMN (500 mg/kg) for consecutive 6 days, followed by i.p. injection of lipopolysaccharides (LPS) (5 mg/kg) or alum (700 μg) on day 7. It is discovered that NMN supplementation suppresses LPS- or alum-induced inflammation in mice, as manifested by the downregulation of proinflammatory cytokines (IL-6 and IL-1β) and proinflammatory enzyme (COX-2). 3. The necessity of AhR for NMN-mediated inhibition of inflammatory response in macrophages AhR, a ligand-activated transcription factor, can mediate the anti-inflammatory function of NMN upon LPS treatment in RAW264.7 cells. Specifically, NMN reduces the expression of COX-2 in cells in bearing AHR. On the contrary. AhR inhibitor (CH223191) deprives the downregulation of IL-6, IL-1β and COX-2 caused by NMN treatment. Likewise, NMN treatment fails to reduce the expression levels of IL-6, IL-1β, and COX-2 in AhR knockout cells. 4. The importance of IDO1/kynurenine/AhR axis in the anti-inflammation function of NMN IDO1 is the rate-limiting enzyme in tryptophan catabolism to produce kynurenine, a metabolic intermediate in NAD+ de novo synthesis pathway. Kynurenine can promote the translocation of AhR from the cytoplasm to nucleus, thereby exerting an anti-inflammatory effect. NMN inhibits LPS-induced inflammation in a IDO1-kynurenine dependent manner in macrophages. 5. Conclusion NMN supplementation mitigates COX-2-associated inflammatory responses by activating lDO-kynurenine-AhR pathway, providing new insights into NAD* regulation in macrophage activation. Reference Liu J, Hou W, Zong Z, et al. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med. Published online February 8, 2024. doi:10.1016/j.freeradbiomed.2024.01.046 BONTAC NMN BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BOMNTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Diabetic peripheral neuropathy (DPN) is one of the most frequent complications of diabetes, ans also a major cause of foot ulcers, disability, and eventual amputation. With the prolongation of the diabetes, about 50% of people with diabetes will eventually develop DPN. Notably, supplementing NAD+ precursors could alleviate DPN symptoms by increasing the NAD+ level and activating the sirtuin-1 (SIRT1) protein. 2. The reversal effect of NAD+ precursors on DPN In vitro, the Dorsal Root Ganglion neurons (DRGs) isolated from diabetic mice are exposed to the NAD+ precursor Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN). It is found that the NAD+ level, the SIRT1 protein, and the deacetylation activity are elevated, followed by the boosted neurite growth, the improved nerve function, and the reversal of IENFD loss. In vivo, supplement of NMN or NR also offsets the neuropathy in C57BL6 mice induced by streptozotocin (STZ) or high fat diet (HFD), as manifested by the improved sensory function, normalized nerve conduction velocities, and restored intraepidermal nerve fibers. 3. The increase of neurite length in a SIRT1-dependent manner post the addition of NMN/NR SIRT1, one of the most unique NAD+ consuming enzymes, can protect against DPN when activated, which may attribute to the improved mitochondrial function and energy homeostasis. Apart from these, SIRT1 activity in the nucleus can deacetylate the transcriptional and co-transcriptional factors that regulate glucose homeostasis and fat oxidation. The activation of SIRT1 is critical for axonal regeneration. NMN/NR treatment or transfection with SIRT1 overexpression vector can directly facilitate the neurite growth in cultured DRG neurons, which however is hindered by the SIRT1 inhibitor EX527, hinting the significance of SIRT1. 4. The association of SARM1 with NMNAT2 in axonal degeneration of DPN Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) controls the axonal degeneration and regeneration via a well-regulated system comprising NAD+ and NMN. NAD and NMNAT2 can boost vesicular glycolysis and axonal transport to maintain the axonal health. The mitochondrial localization of SARM1 complements the coordinated activity of NMNAT2 that promotes axonal survival. 5. Conclusion Supplementing NAD+ precursors may be a promising approach for the treatment of DPN. A SARM1 inhibitor coupled with either NR or NMN may be more effective than a single agent alone in preventing or treating DPN. Reference Chandrasekaran K, Najimi N, Sagi AR, et al. NAD+ Precursors Reverse Experimental Diabetic Neuropathy in Mice. Int J Mol Sci. 2024;25(2):1102. Published 2024 Jan 16. doi:10.3390/ijms25021102 BONTAC NMN and NR BONTAC has dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 160 global patents as well as strong R&D team consisting of Doctors and Masters. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. Both the precursors NMN and NR are available in BONTAC. The high purity and stability of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.