A Novel Way Out of the Dilemma in the Treatment of Breast Cancer: Rh2-Lipo

A Novel Way Out of the Dilemma in the Treatment of Breast Cancer: Rh2-Lipo



Introduction

Ginsenoside Rh2 nanoliposome formulation has been proved to effectively target and deliver drugs to the tumor site, with less side effects and higher treatment efficiency, holding great promise in the treatment of tumors including breast cancer.

Dilemma of traditional tumor therapies

The traditional tumor therapies (eg. surgery, radiation, and chemotherapy) carry the high risks of damaging normal tissues and incompletely eradicating the cancer. Strikingly, nanotechnology opens up novel opportunities for tumor treatment, which can enhance earlier diagnosis through in vitro assays, promote imaging capabilities for diagnosis and treatment monitoring, and improve therapeutic outcomes by refining targeting precision, augmenting localized drug efficacy as well as minimizing systemic toxicity.


 

Limitations of conventional liposome formulations

The conventional liposome formations encounter a lot of bottlenecks in improving the progress of tumor microenvironment, a vital complex ecosystem for cancer development and metastasis. In addition, these formulations face the trouble (eg. issues related to religion tradition and vegetarianism) brought by cholesterol, an ingredient of traditional liposomes. Moreover, there are disadvantages of complicated fabrication process, low targeting efficiency of ligand-modified liposomes as well as extended circulation time of liposomes caused by the utilization of polyethylene glycol.

Merits of PTX-Rh2-Lipo

PTX-Rh2-lipo, a potential nanomedicine, has an overtly smaller particle size and higher zeta potential when compared with PTX-C-Lipo. Both types of liposomes show analogous encapsulation and stabilization abilities, as manifested by similar polydispersity index, encapsulation efficiency, and loading efficiency. 



Different from conventional wooden liposomes, PTX-Rh2-Lipo has the merits of enhanced uptake in tumor-associated fibroblasts L929 and 4T1 breast cancer cells, high targeting and penetration capacity, cytotoxicity against L929 fibroblasts, normalization of the vessel network, and depletion of stromal collagen.


 

Conclusion

Rh2-lipo cannot kill 4T1 breast cancer cells alone, despite of its stronger penetration ability in the tumors. Yet, it can act as a delivery vehicle for paclitaxel (PTX) to enhance its antitumor properties. Specifically, in this novel Rh2-Lipo-based nano-carrier PTX-Rh2-lipo, ginsenoside Rh2 can not only serve as a multifunctional membrane material to stabilize the structure and prolong the blood circulation of liposomes, but also works as an active ingredient to synergically enhance the efficacy of anti-cancer drugs by remodeling tumor-associated microenvironment and stimulating the immune system.


 

Reference

[1] Alrushaid N, Khan FA, Al-Suhaimi EA, et al. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics. 2023; 15(3):1025. doi: 10.3390/pharmaceutics15031025
[2] Hong C, Liang J, Xia J, et al. One Stone Four Birds: A Novel Liposomal Delivery System Multi-functionalized with Ginsenoside Rh2 for Tumor Targeting Therapy. Nanomicro Lett. 2020;12(1):129. doi:10.1007/s40820-020-00472-8
[3] Hong C, Wang A, Xia J, et al. Ginsenoside Rh2-Based Multifunctional Liposomes for Advanced Breast Cancer Therapy. Int J Nanomedicine. 2024;19:2879-2888. doi:10.2147/IJN.S437733

BONTAC Ginsenosides

BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy.


 

Disclaimer

This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.

Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

 

Get In Touch


Recommend Read

Leave Your Message