Tight Connection of NADP+/NADPH Balance with Cardiovascular Pathologies

Tight Connection of NADP+/NADPH Balance with Cardiovascular Pathologies



Introduction

Cardiovascular diseases (CVD) poses huge economic burden and great threat to the life of patients, even surpassing Alzheimer's disease and diabetes. 17.9 million people in the world die from CVD, with indirect treatment costs of $237 billion per year, which are projected to increase to $368 billion by 2035. It has been reported that the deficiency or imbalance of oxidized nicotinamide adenine dinucleotide phosphate (NADP+)/reduced nicotinamide adenine dinucleotide phosphate (NADPH) redox couple is linked to a variety of pathological conditions including CVD.

NADP(H) redox couple as cofactor/electron carrier in cardiommyocytes

NADPH is an essential cofactor of glutathione reductase (GR) and thioredoxin reductase (TRs) in cardiommyocytes, with a crucial role in maintaining cellular redox homeostasis and energy metabolism. GR catalyzes the recycling of Glutathion (GSH) from oxidized glutathione (GSSG), and TRs reduces oxidized Trx-S2 into Trx-(SH)2. Simultaneously, both enzymes require NADPH as an electron donor and oxidize it to NADP+. Once O2  is formed, for example, from NOXs in the cytosol and from mitochondrial electron transport chain (ETC), cytosolic CuZnSOD and mitochondrial MnSOD will reduce it to H2O2. GSH can be used by glutathione peroxidase (GPx) to reduce H2Ofurther to water. Trx-(SH)2 provides reducing equivalents for Prx in the removal of H2O2.

The connection of NADP(H) with cardiovascular pathologies

NADP(H) plays a dual role in cardiovascular pathologies. On the one hand, the reduced NADPH can result in significant antioxidant deficiencies and intracellular accumulation of free radicals, which triggers lipid peroxidation, inflammation, and vascular dysfunction, ultimately exacerbating the course of atherosclerosisoxidase. On the other hand, high NADPH level can give rise to myocardial injury by inducing reductive stress and enhancing reactive oxygen species (ROS) production.

Conclusion

Changes in cellular NADP(H) content affect the intermediary metabolism of cardiac function, especially in diseased myocardium. Maintaining the balance between NADP+ and NADPH in cardiommyocytes is critically important for the treatment of CVD. Either deficiency or excess NADP(H) levels can lead to imbalances in cellular redox state and metabolic homeostasis, resulting in energy stress, redox stress, and ultimately disease state. NADP(H) has an important therapeutic value in CVD.

Reference

Sun Y, Wu D, Hu Q. NADP+/NADPH in Metabolism and its Relation to Cardiovascular Pathologies. Curr Med Chem. Published online February 16, 2024. doi:10.2174/0109298673275187231121054541

BONTAC NADP(H)

BONTAC has dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NADP(H). Bonzyme whole-enzymatic method is adopted, which is environmental-friendly, with no harmful solvent residues. The purity of NADP and NADPH can reach up to 95% and 98%, respectively, which is benefited from the exclusive Bonpure seven-step purification technology. BONTAC has self-owned factories and has obtained a number of international certifications, where high quality and stable supply of products can be ensured. BONTAC has four domestic and foreign NADPH patents, leading the industry.

img

img

Disclaimer

This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.

Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.


 

Get In Touch


Recommend Read

Leave Your Message